Skip to main content
Log in

Genomic dispersion of 28S rDNA during karyotypic evolution in the ant genusMyrmecia (Formicidae)

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1997

Abstract

The chromosomal localization of 28S rDNA was investigated in 16 species of the Australian ant genusMyrmecia, with 2n numbers ranging from 4 to 76, using the fluorescence in situ hybridization method and karyographic analysis. A unique phenomenon was observed: the number of chromosomes carrying 28S rDNA increases from 2 in species with low chromosome numbers to 19 in species with high chromosome numbers. This is termed rDNA dispersion. Centric fission and a reciprocal translocation that occurs in C-bands were detected as the major mechanisms involved in rDNA dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Hirai H, Spotila LD, LoVerde PT (1989)Schistosoma mansoni: chromosomal localization of DNA repeat elements by in situ hybridization using biotinylated DNA probes. Exp Parasitol 69:175–188

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Yamamoto M-T, Ogura K, Satta Y, Yamada M, Taylor RW, Imai HT (1994) Multiplication of 28S rDNA and NOR activity in chromosome evolution among ants of theMyrmecia pilosula species complex. Chromosoma 103:171–178

    PubMed  CAS  Google Scholar 

  • Imai HT (1975) Evidence for non-random localization of the centromere on mammalian chromosomes. J Theor Biol 49:111–123

    PubMed  CAS  Google Scholar 

  • Imai HT (1976) Further evidence and biological significance for non-random localization of the centromere on mammalian chromosomes. J Theor Biol 61:195–203

    Article  PubMed  CAS  Google Scholar 

  • Imai HT (1991) Mutability of constitutive heterochromatin (C-bands) during eukaryotic chromosomal evolution and their cytological meaning. Jpn J Genet 66:635–661

    Article  PubMed  CAS  Google Scholar 

  • Imai HT, Crozier RH (1980) Quantitative analysis of directionality in mammalian karyotype evolution. Am Nat 116:537–569

    Article  Google Scholar 

  • Imai HT, Maruyama T (1978) Karyotype evolution by pericentric inversion as a stochastic process. J Theor Biol 70:253–261

    Article  PubMed  CAS  Google Scholar 

  • Imai HT, Taylor RW (1989) Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the antMyrmecia (pilosula) n=1. Chromosoma 98:456–460

    Article  Google Scholar 

  • Imai HT, Crozier RH, Taylor RW (1977) Karyotype evolution in Australian ants. Chromosoma, 59:341–393

    Article  Google Scholar 

  • Imai HT, Maruyama T, Gojobori T, Inoue Y, Crozier RH (1986) Theoretical bases for karyotype evolution. I. The minimum interaction hypothesis. Am Nat 128:900–920

    Article  Google Scholar 

  • Imai HT, Taylor RW, Crosland MWJ, Crozier RH (1988) Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J Genet 63:159–185

    PubMed  CAS  Google Scholar 

  • Imai HT, Hirai H, Satta Y, Shiroishi T, Yamada M, Taylor RW (1992) Phase specific Ag-staining of nucleolar organizer regions (NORs) and kinetochores in the Australian andMyrmecia croslandi. Jpn J Genet 76:437–447

    Article  Google Scholar 

  • Imai HT, Taylor RW, Crozier RH (1994) Experimental bases for the minimum interaction theory. I. Chromosome evolution in ant of theMyrmecia pilosula series complex (Hymenoptera: Formicidae: Myrmeciinae). Jpn J Gent 69:137–182

    Article  Google Scholar 

  • Meyne J, Hirai H, Imai HT (1995) FISH analysis of the telomere sequences of bulldog ants (Myrmecia; Formicidae). Chromosoma 104:14–18

    PubMed  CAS  Google Scholar 

  • Ogata K (1991) Ants of the genusMyrmecia Fabricius: a review of the species groups and their phylogenetic relationships (Hymenoptera: Formicidae: Myrmeciinae). Syst Entomol 16: 353–381

    Google Scholar 

  • Palomeque T, Chica E, Cano MA, Diaz de la Guardia R (1988) Karyotypes, C-banding, and chromosomal location of active nucleolar organizing regions in Tapinoma (Hymenoptera, Formicidae). Genome 30:277–280

    Article  PubMed  CAS  Google Scholar 

  • Palomeque T, Chica E, Cano MA, Diaz de la Guardia R (1990) Development of silver stained structures during spermatogenesis in different genera of Formicidae. Genetica 81:51–58

    Article  Google Scholar 

  • Pellegrini M, Manning J, Davidson N (1977) Sequence arrangement of the rDNA ofDrosophila melanogaster. Cell 10: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1990) Chromosome banding. Unwin Hyman, London

    Google Scholar 

  • Wellauer PK, Dawid IB (1977) The structural organization of the ribosomal DNA inDrosophila melanogaster. Cell 10:193–212

    Article  PubMed  CAS  Google Scholar 

  • Wellauer PK, Dawid IB, Tartof KD (1978) X and Y chromosomal ribosomal DNA ofDrosophila. Comparison of spacers and insertions. Cell 14:269–278

    Article  PubMed  CAS  Google Scholar 

  • White MJD (1954, 1973) Animal cytology and evolution. 2nd and 3rd edns. Cambridge University Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotami T. Imai.

Additional information

Edited by: D. Schweizer

An erratum to this article is available at http://dx.doi.org/10.1007/BF02529753.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Yamamoto, MT., Taylor, R.W. et al. Genomic dispersion of 28S rDNA during karyotypic evolution in the ant genusMyrmecia (Formicidae). Chromosoma 105, 190–196 (1996). https://doi.org/10.1007/BF02509500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509500

Keywords

Navigation