Skip to main content

Advertisement

Log in

Blood Flow and Oxygen Transport in Descending Branch of Lateral Femoral Circumflex Arteries After Transfemoral Amputation: A Numerical Study

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

This study investigates atherosclerotic development in the descending branch of the lateral femoral circumflex artery (DLFCA) after transfemoral amputation and assesses the effects of blood velocity during exercise on the oxygen transport of the residuum DLFCA. Computational fluid dynamics models of DLFCAs coupled with oxygen transport in both the residuum and the sound contralateral limb were established. The profiles for three blood velocity profiles were applied at the inlet of the residuum DLFCA model. The results show that in comparison with the sound limb, blood velocity in the residuum DLFCA was higher, the number of low-wall-shear-stress (WSS) regions was smaller, the Sherwood number for the arterial wall was smaller, and there were more hypoxia zones. An increase in blood velocity in the residuum DLFCA resulted in increases in WSS and the Sherwood number and reductions in the numbers of low-WSS regions and hypoxia zones. The rate of atherosclerosis in the residuum is lower than that of the sound limb in terms of WSS, whereas the rate of atherosclerosis in the sound limb is lower than that of the residuum in terms of hypoxia. Overall, both WSS and oxygen transport need to be considered in order to precisely predict atherosclerosis development in the lower-limb arteries after amputation. In addition, exercise is beneficial for oxygen transport, with an increase in oxygen flux to the arterial wall, and is helpful for the prevention and control of atherosclerosis in the arteries of the residuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luo, Y. Z., & Sun, W. (2009). The development of Chinese prostheses since the founding. Orthopaedic Journal of China, 17(17), 1325–1328.

    Google Scholar 

  2. Zhao, M. G., Zhang, Y. D., Zhang, Z. J., Liu, W. D., & Peng, J. (2008). Characteristics and staged rescue of severe cases in “5.12” Wenchuan megaseism. China Journal of Modern Medicine, 18(16), 2287–2294.

    Google Scholar 

  3. Lyon, C. C., Kulkarni, J., Zimersonc, E., Van Ross, E., & Beck, M. H. (2000). Skin disorders in amputees. Journal of the American Academy of Dermatology, 42(3), 501–507.

    Article  Google Scholar 

  4. Sanders, J. E., Garbini, J. L., Leschen, J. M., Allen, M. S., & Jorgensen, J. E. (1997). A bidirectional load applicator for the investigation of skin response to mechanical stress. IEEE Transactions on Biomedical Engineering, 44(4), 290–296.

    Article  Google Scholar 

  5. Portnoy, S., Siev-Ner, I., Shabshin, N., Kristal, A., Yizhar, Z., & Gefen, A. (2009). Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users. Journal of Biomechanics, 42(16), 2686–2693. doi:10.1016/j.jbiomech.2009.08.019.

    Article  Google Scholar 

  6. Fraisse, N., Martinet, N., Kpadonou, T. J., Paysant, J., Blum, A., & Andre, J. M. (2008). Muscles of the below-knee amputees. Annals of Rehabilitation and Physical Medicine, 51(3), 218–227. doi:10.1016/j.annrmp.2008.01.012.

    Article  Google Scholar 

  7. Schmalz, T., Blumentritt, S., & Reimers, C. (2001). Selective thigh muscle atrophy in trans-tibial amputees: An ultrasonographic study. Archives of Orthopaedic and Trauma Surgery, 121(6), 307–312.

    Article  Google Scholar 

  8. Lee, W. C., Zhang, M., Jia, X., & Cheung, J. (2004). Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Medical Engineering & Physics, 26(8), 655–662.

    Article  Google Scholar 

  9. Mak, A. F. T., Zhang, M., & Boone, D. A. (2001). State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: A review. Journal of Rehabilitation Research and Development, 38(2), 161–173.

    Google Scholar 

  10. Renström, P., Grimby, G., Morelli, B., & Palmertz, B. (1982). Thigh muscle atrophy in below-knee amputees. Scandinavian Journal of Rehabilitation Medicine. Supplement, 9, 150–162.

    Google Scholar 

  11. Dillingham, T. R., Pezzin, L. E., & Shore, A. D. (2005). Reamputation, mortality, and health care costs among persons with dysvascular lower-limb amputations. Archives of Physical Medicine and Rehabilitation, 86(3), 480–486.

    Article  Google Scholar 

  12. Gudmundsson, G., Matthiasson, S. E., Arason, H., Johannsson, H., Runarsson, F., Bjarnason, H., et al. (2002). Localization of a gene for peripheral arterial occlusive disease to chromosome 1p31. American Journal of Human Genetics, 70(3), 586–592. doi:10.1086/339251.

    Article  Google Scholar 

  13. Erikson, U., & Hulth, A. (1962). Circulation of amputation stumps. Arteriographic and skin temperature studies. Acta Orthopaedica Scandinavica, 32, 159–170.

    Article  Google Scholar 

  14. Qiu, Y., & Tarbell, J. M. (2000). Numerical simulation of oxygen mass transfer in a compliant curved tube model of a coronary artery. Annals of Biomedical Engineering, 28(1), 26–38.

    Article  Google Scholar 

  15. Liu, X., Fan, Y., & Deng, X. (2010). Effect of spiral flow on the transport of oxygen in the aorta: A numerical study. Annals of Biomedical Engineering, 38(3), 917–926.

    Article  Google Scholar 

  16. Coppola, G., & Caro, C. (2008). Oxygen mass transfer in a model three-dimensional artery. Journal of the Royal Society Interface, 5(26), 1067–1075.

    Article  Google Scholar 

  17. Tada, S., & Tarbell, J. M. (2006). Oxygen mass transport in a compliant carotid bifurcation model. Annals of Biomedical Engineering, 34(9), 1389–1399.

    Article  Google Scholar 

  18. Bateman, R. M., Sharpe, M. D., & Ellis, C. G. (2003). Bench-to-bedside review: Microvascular dysfunction in sepsis–hemodynamics, oxygen transport, and nitric oxide. Critical Care, 7(5), 359.

    Article  Google Scholar 

  19. Wu, S. P., Ringgaard, S., Oyre, S., Hansen, M. S., Rasmus, S., & Pedersen, E. M. (2004). Wall shear rates differ between the normal carotid, femoral, and brachial arteries: An in vivo MRI study. Journal of Magnetic Resonance Imaging, 19(2), 188–193. doi:10.1002/jmri.10441.

    Article  Google Scholar 

  20. Papaharilaou, Y., Aristokleous, N., Seimenis, I., Khozeymeh, M. I., Georgiou, G. C., Brott, B. C., et al. (2013). Effect of head posture on the healthy human carotid bifurcation hemodynamics. Medical and Biological Engineering and Computing, 51(1–2), 207–218. doi:10.1007/s11517-012-0985-6.

    Article  Google Scholar 

  21. Caro, C., Fitz-Gerald, J., & Schroter, R. (1971). Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proceedings of the Royal Society of London B, 177(1046), 109–133.

    Article  Google Scholar 

  22. Palumbo, R., Gaetano, C., Antonini, A., Pompilio, G., Bracco, E., Ronnstrand, L., et al. (2002). Different effects of high and low shear stress on platelet-derived growth factor isoform release by endothelial cells: Consequences for smooth muscle cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(3), 405–411.

    Article  Google Scholar 

  23. Chatzizisis, Y. S., Baker, A. B., Sukhova, G. K., Koskinas, K. C., Papafaklis, M. I., Beigel, R., et al. (2011). Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation, 123(6), 621–630.

    Article  Google Scholar 

  24. Siogkas, P., Sakellarios, A., Exarchos, T. P., Athanasiou, L., Karvounis, E., Stefanou, K., et al. (2011). Multiscale-patient-specific artery and atherogenesis models. IEEE Transactions on Biomedical Engineering, 58(12), 3464–3468.

    Article  Google Scholar 

  25. Dowd, G. S. (1987). Predicting stump healing following amputation for peripheral vascular disease using the transcutaneous oxygen monitor. Annals of the Royal College of Surgeons of England, 69(1), 31.

    Google Scholar 

  26. Holstein, P., Sager, P., & Lassen, N. A. (1979). Wound healing in below-knee amputations in relation to skin perfusion pressure. Acta Orthopaedica, 50(1), 49–58. doi:10.3109/17453677909024089.

    Article  Google Scholar 

  27. Ratliff, D. A., Clyne, C. A. C., Chant, A. D. B., & Webster, J. H. H. (1984). Prediction of amputation wound healing: The role of transcutaneous PO2 assessment. British Journal of Surgery, 71(3), 219–222. doi:10.1002/bjs.1800710320.

    Article  Google Scholar 

  28. Caron, M.-A., Thériault, M.-E., Paré, M.-È., Maltais, F., & Debigaré, R. (2009). Hypoxia alters contractile protein homeostasis in L6 myotubes. FEBS Letters, 583(9), 1528–1534.

    Article  Google Scholar 

  29. Dong, R., Jiang, W., Zhang, M., Leung, A., & Wong, M. (2015). Review: Hemodynamic studies for lower limb amputation and rehabilitation. Journal of Mechanics in Medicine and Biology, 15(04), 1530005.

    Article  Google Scholar 

  30. Standring, S., Ellis, H., Healy, J., Jhonson, D., Williams, A., & Collins, P. (2005). Gray’s anatomy: The anatomical basis of clinical practice. American Journal of Neuroradiology, 26(10), 2703.

    Google Scholar 

  31. Halvorson, E. G., Taylor, H. O. B., & Orgill, D. P. (2008). Patency of the descending branch of the lateral circumflex femoral artery in patients with vascular disease. Plastic and Reconstructive Surgery, 121(1), 121–129. doi:10.1097/01.prs.0000293862.68476.97.

    Article  Google Scholar 

  32. Xu, D. C., Zhong, S. Z., Kong, J. M., Wang, G. Y., Liu, M. Z., Luo, L. S., et al. (1988). Applied anatomy of the anterolateral femoral flap. Plastic and Reconstructive Surgery, 82(2), 305.

    Article  Google Scholar 

  33. Ku, D. N. (1997). Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1), 399–434.

    Article  MathSciNet  Google Scholar 

  34. Friedman, M., Bargeron, C., Hutchins, G., Mark, F., & Duncan, D. (1992). Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. Journal of Biomechanical Engineering, 114(3), 317–320.

    Article  Google Scholar 

  35. Moore, J., Maier, S. E., Ku, D. N., & Boesiger, P. (1994). Hemodynamics in the abdominal aorta: A comparison of in vitro and in vivo measurements. Journal of Applied Physiology, 76(4), 1520–1527.

    Article  Google Scholar 

  36. Caro, C. G., Pedley, T., Schroter, R., Seed, W., & Parker, K. (1978). The mechanics of the circulation (Vol. 527). Oxford: Oxford University Press.

    MATH  Google Scholar 

  37. Politis, A. K., Stavropoulos, G. P., Christolis, M. N., Panagopoulos, F. G., Vlachos, N. S., & Markatos, N. C. (2007). Numerical modeling of simulated blood flow in idealized composite arterial coronary grafts: Steady state simulations. Journal of Biomechanics, 40(5), 1125–1136. doi:10.1016/j.jbiomech.2006.05.008.

    Article  Google Scholar 

  38. Ko, T. H., Ting, K., & Yeh, H. C. (2007). Numerical investigation on flow fields in partially stenosed artery with complete bypass graft: An in vitro study. International Communications in Heat and Mass Transfer, 34(6), 713–727. doi:10.1016/j.jcheatmasstransfer.2007.03.010.

    Article  Google Scholar 

  39. Ojha, M., Ethier, C. R., Johnston, K. W., & Cobbold, R. S. (1990). Steady and pulsatile flow fields in an end-to-side arterial anastomosis model. Journal of Vascular Surgery, 12(6), 747–753. doi:10.1067/mva.1990.24365.

    Article  Google Scholar 

  40. Kim, Y. H., Kim, J. E., Ito, Y., Shih, A. M., Brott, B., & Anayiotos, A. (2008). Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework. Annals of Biomedical Engineering, 36(11), 1753–1763. doi:10.1007/s10439-008-9558-0.

    Article  Google Scholar 

  41. Wentzel, J. J., Krams, R., Schuurbiers, J. C., Oomen, J. A., Kloet, J., van der Giessen, W. J., et al. (2001). Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation, 103(13), 1740–1745.

    Article  Google Scholar 

  42. Batra, R., & Jena, B. (1991). Flow of a Casson fluid in a slightly curved tube. International Journal of Engineering Science, 29(10), 1245–1258.

    Article  Google Scholar 

  43. Johnston, B. M., Johnston, P. R., Corney, S., & Kilpatrick, D. (2006). Non-Newtonian blood flow in human right coronary arteries: Transient simulations. Journal of Biomechanics, 39(6), 1116–1128.

    Article  Google Scholar 

  44. Chen, J., & Lu, X.-Y. (2006). Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. Journal of Biomechanics, 39(5), 818–832.

    Article  Google Scholar 

  45. Fan, Y., Jiang, W., Zou, Y., Li, J., Chen, J., & Deng, X. (2009). Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation. Acta Mechanica Sinica, 25(2), 249–255.

    Article  Google Scholar 

  46. Shoemaker, J. K., Phillips, S. M., Green, H. J., & Hughson, R. L. (1996). Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovascular Research, 31(2), 278–286.

    Article  Google Scholar 

  47. Plowman, S. A., & Smith, D. L. (2013). Exercise physiology for health fitness and performance. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  48. Fournier, R. L. (2011). Basic transport phenomena in biomedical engineering. Boca Raton: CRC Press.

    Google Scholar 

  49. Moore, J., & Ethier, C. (1997). Oxygen mass transfer calculations in large arteries. Journal of Biomechanical Engineering, 119(4), 469–475.

    Article  Google Scholar 

  50. Buerk, D. G., & Goldstick, T. K. (1982). Arterial wall oxygen consumption rate varies spatially. American Journal of Physiology-Heart and Circulatory Physiology, 243(6), H948–H958.

    Article  Google Scholar 

  51. Tarbell, J. M. (2003). Mass transport in arteries and the localization of atherosclerosis. Annual Review of Biomedical Engineering, 5(1), 79–118.

    Article  Google Scholar 

  52. Okamoto, R., Hatani, M., Tsukitani, M., Suehiro, A., Fujino, M., Imai, N., et al. (1983). The effect of oxygen on the development of atherosclerosis in WHHL rabbits. Atherosclerosis, 47(1), 47–53.

    Article  Google Scholar 

  53. Kolandavel, M. K., Fruend, E. T., Ringgaard, S., & Walker, P. G. (2006). The effects of time varying curvature on species transport in coronary arteries. Annals of Biomedical Engineering, 34(12), 1820–1832. doi:10.1007/s10439-006-9188-3.

    Article  Google Scholar 

  54. Schneiderman, G., Mockros, L. F., & Goldstick, T. K. (1982). Effect of pulsatility on oxygen transport to the human arterial wall. Journal of Biomechanics, 15(11), 849–858. doi:10.1016/0021-9290(82)90050-1.

    Article  Google Scholar 

  55. Ma, P. P., Li, X. M., & Ku, D. N. (1994). Heat and mass-transfer in separated flow region for high prandtl and schmidt numbers under pulsatile conditions. International Journal of Heat and Mass Transfer, 37(17), 2723–2736.

    Article  Google Scholar 

  56. Olgac, U., Kurtcuoglu, V., Saur, S. C., & Poulikakos, D. (2008). Identification of atherosclerotic lesion-prone sites through patient-specific simulation of low-density lipoprotein accumulation. In Medical Image Computing and Computer-Assisted InterventionMICCAI 2008 (pp. 774–781). New York: Springer.

    Chapter  Google Scholar 

  57. Steinman, D. A. (2004). Image-based computational fluid dynamics: A new paradigm for monitoring hemodynamics and atherosclerosis. Current Drug Targets-Cardiovascular & Hematological Disorders, 4(2), 183–197.

    Article  Google Scholar 

  58. Taylor, C. A., Hughes, T. J., & Zarins, C. K. (1998). Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis. Annals of Biomedical Engineering, 26(6), 975–987.

    Article  Google Scholar 

  59. Ogawa, S., Gerlach, H., Esposito, C., Pasagian-Macaulay, A., Brett, J., & Stern, D. (1990). Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. Journal of Clinical Investigation, 85(4), 1090.

    Article  Google Scholar 

  60. Matsushita, H., Morishita, R., Nata, T., Aoki, M., Nakagami, H., Taniyama, Y., et al. (2000). Hypoxia-induced endothelial apoptosis through nuclear factor-κB (NF-κB)–mediated bcl-2 suppression in vivo evidence of the importance of NF-κB in endothelial cell regulation. Circulation Research, 86(9), 974–981.

    Article  Google Scholar 

  61. Hulten, L. M., & Levin, M. (2009). The role of hypoxia in atherosclerosis. Current Opinion in Lipidology, 20(5), 409–414.

    Article  Google Scholar 

  62. Back, L. H., Radbill, J. R., & Crawford, D. W. (1977). Analysis of oxygen transport from pulsatile, viscous blood flow to diseased coronary arteries of man. Journal of Biomechanics, 10(11), 763–774.

    Article  Google Scholar 

  63. Schneiderman, G., & Goldstick, T. K. (1978). Significance of luminal plasma layer resistance in arterial wall oxygen supply. Atherosclerosis, 31(1), 11–20.

    Article  Google Scholar 

  64. Stein, T. R., Martin, J. C., & Keller, K. H. (1971). Steady-state oxygen transport through red blood cell suspensions. Journal of Applied Physiology, 31(3), 397–402.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid from the National Natural Science Foundation of China (No. 11272224) and the Project of Sichuan Province Academic and Technical Leaders Cultivate Funding (No. 2012DTPY021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Tao Jiang or Ming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Jiang, WT., Dong, RQ. et al. Blood Flow and Oxygen Transport in Descending Branch of Lateral Femoral Circumflex Arteries After Transfemoral Amputation: A Numerical Study. J. Med. Biol. Eng. 37, 63–73 (2017). https://doi.org/10.1007/s40846-016-0202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0202-4

Keywords

Navigation