Skip to main content
Log in

Physiological traits for improving high temperature stress tolerance in rice

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

High temperature stress is projected to be one of the major stresses of limiting rice productivity worldwide in future climate change scenario. This review explicates the key physiological traits for tailoring high temperature tolerance in rice. These physiological traits can be used to explore the genetic variability among rice germplasm and to develop the improved genotypes through breeding programs. Traits influenced under high day and night temperature are highlighted for understanding differential temporal and phenological regulation. Application of plant hormones and inorganic elicitor molecules to induce short term acclimation response have been shown to be useful for mitigating high temperature stress effects specifically when applied at critical growth stge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(source: Chandrakala et al. 2013)

Similar content being viewed by others

References

  • Agarwal, S., Sairam, R. K., Srivastava, G. C., & Meena, R. C. (2005). Changes in antioxidant enzymes activity and oxidative stress by abscissic acid and salicylic acid in wheat genotypes. Biologia Plantarum, 49, 541–550.

    Article  CAS  Google Scholar 

  • Ali, M. K., Azhar, A., & Galani, S. (2013). Response of rice (Oryza sativa L.) under elevated temperature at early growth stage: Physiological markers. Russian Journal of Agricultural and Socio-Economic Sciences, 20, 11–19.

    Google Scholar 

  • Almeselmani, M., Deshmukh, P. S., Sairam, R. K., Kushwaha, S. R., & Singh, T. P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171, 382–388.

    Article  CAS  PubMed  Google Scholar 

  • Amani, I., Fischer, R. A., & Reynolds, M. P. (1996). Canopy temperature depression associated with yield of irrigated spring wheat cultivars in a hot climate. Journal of Agronomy and Crop Science, 176, 119–129.

    Article  Google Scholar 

  • Atkin, O. K., Bruhn, D., Hurry, V. M., & Tjoelker, M. G. (2005). The hot and the cold: Unravelling the variable response of plant respiration to temperature. Functional Plant Biology, 32, 87–105.

    Article  Google Scholar 

  • Bahuguna, R. N., & Jagadish, K. S. (2015). Temperature regulation of plant phenological development. Environmental and Experimental Botany, 111, 83–90.

    Article  CAS  Google Scholar 

  • Bahuguna, R. N., Jagadish, K. S. V., Coast, O., & Wassmann, R. (2014). Plant abiotic stress: Temperature extremes. In N. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (Vol. 4, pp. 330–334). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Bahuguna, R. N., Jha, J., Pal, M., Shah, D., Lawas, L. M., Khetarpal, S., et al. (2015). Physiological and biochemical characterization of NERICA-L-44: A novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiologia Plantarum, 154, 543–559.

    Article  CAS  PubMed  Google Scholar 

  • Bahuguna, R. N., Solis, C. A., Shi, W., & Jagadish, K. S. (2016). Post-flowering night respiration and altered sink activity account for high night temperature induced grain yield and quality loss in rice (Oryza sativa L.). Physiologia Plantarum,. doi:10.1111/ppl.12485.

    PubMed  Google Scholar 

  • Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.

    Article  CAS  PubMed  Google Scholar 

  • Bäurle, I. (2016). Plant heat adaptation: priming in response to heat stress. F1000Research, 5, 694. doi:10.12688/f1000research.7526.1

    Article  Google Scholar 

  • Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. doi:10.3389/fpls.2013.00273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrakala, J. U., Chaturvedi, A. K., Ramesh, K. V., Rai, P., Khetarpal, S., & Pal, M. (2013). Acclimation response of signalling molecules for high temperature stress on photosynthetic characteristics in rice genotypes. Indian Journal of Plant Physiology, 18(2), 142–150.

    Article  Google Scholar 

  • Clarke, S. M., Mur, L. A. J., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant Journal, 38, 432–447.

    Article  CAS  PubMed  Google Scholar 

  • Cossani, C. M., & Reynolds, M. P. (2012). Physiological traits for improving heat tolerance in wheat. Plant Physiolology, 160, 1710–1718.

    Article  CAS  Google Scholar 

  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659–665.

    Article  CAS  Google Scholar 

  • Dhaubhadel, S., Browning, K. S., Gallie, D. R., & Krishna, P. (2002). Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant Journal, 29, 681–691.

    Article  CAS  PubMed  Google Scholar 

  • Divi, U. K., Rahman, T., & Krishna, P. (2010). Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151. doi:10.1186/1471-2229-10-151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dow, G. J., Bergmann, D. C., & Berry, J. A. (2014). An integrated model of stomatal development and leaf physiology. New Phytologist, 201(4), 1218–1226.

    Article  CAS  PubMed  Google Scholar 

  • Feng, B., Liu, P., Li, G., Dong, S. T., Wang, F. H., Kong, L. A., et al. (2014). Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. Journal of Agronomy and Crop Science, 200, 143–155.

    Article  CAS  Google Scholar 

  • Gaihre, Y. K., Wassmann, R., Tirol-Padre, A., Villegas-Pangga, G., Aquino, E., & Kimball, B. A. (2014). Seasonal assessment of greenhouse gas emissions from irrigated lowland rice fields under infrared warming. Agriculture, Ecosystems & Environment, 184, 88–100.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Gong, M., Li, Y. J., Mei, D. X. T., & Li, Z. G. (1997). Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize seedlings. Journal of Plant Physiolology, 150, 615–621.

    Article  CAS  Google Scholar 

  • Gong, M., van der Luit, A. H., Khight, M. R., & Trewavas, A. J. (1998). Heat-shock-induced changes of intracellular Ca2+ level in tobacco seedling in relation to thermotolerance. Plant Physiology, 116, 429–437.

    Article  CAS  PubMed Central  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.

    Article  CAS  Google Scholar 

  • Hoel, B., & Solhaug, K. A. (1998). Effect of irradiance on chlorophyll estimation with the minolta spad-502 leaf chlorophyll meter. Annals of Botany, 82, 389–392.

    Article  Google Scholar 

  • Hofmann, N. R. (2009). The plasmamembrane as first responder to heat stress. The Plant Cell, 21, 2544. doi:10.1105/tpc.109.210912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath, I., Glatz, A., Nakamoto, H., Mishkind, M. L., Munnik, T., Saidi, Y., et al. (2012). Heat shock response in photosynthetic organisms: Membrane and lipid connections. Progress in Lipid Research, 51, 208–220.

    Article  CAS  PubMed  Google Scholar 

  • IPCC, Climate Change. (2007). Impacts, adaptation and vulnerability. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ishimaru, T., Hirabayashi, H., Ida, M., Takai, T., San-Oh, Y. A., Yoshinaga, S., et al. (2010). A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany, 106, 515–520.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagadish, S. K., Bahuguna, R. N., Djanaguiraman, M., Gamuyao, R., Prasad, P. V., & Craufurd, P. Q. (2016). Implications of high temperature and elevated CO2 on flowering time in plants. Frontiers in Plant Science,. doi:10.3389/fpls.2016.00913.

    PubMed  PubMed Central  Google Scholar 

  • Jagadish, K. S., Craufurd, P., Shi, W., & Oane, R. (2014). A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). Functional Plant Biology, 41(1), 48–55.

    Article  CAS  Google Scholar 

  • Jagadish, S. V. K., Craufurd, P. Q., & Wheeler, T. R. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 58(7), 1627–1635.

    Article  CAS  PubMed  Google Scholar 

  • Jagadish, K. S., Kishor, P. B. K., Bahuguna, R. N., von Wirén, N., & Sreenivasulu, N. (2015). Staying alive or going to die during terminal senescence-an enigma surrounding yield stability. Frontiers in Plant Science,. doi:10.3389/fpls.2015.01070.

    PubMed  PubMed Central  Google Scholar 

  • Jagadish, S. V. K., Muthurajan, R., Oane, R., Wheeler, T. R., Heuer, S., Bennett, J., et al. (2010). Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 61(1), 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., & Haung, B. (2001). Plants and the environment: Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany, 52, 341–349.

    Article  CAS  PubMed  Google Scholar 

  • Kadam, N. N., Xiao, G., Melgar, R. J., Bahuguna, R. N., Quinones, C., Tamilselvan, A., et al. (2014). Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. In D. Sparks (Ed.), Advances in agronomy (pp. 111–156). Elsevier Inc: Academic Press.

    Google Scholar 

  • Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Kleinhenz, M. D., & Palta, J. P. (2002). Root zone calcium modulates the response of potato plants to heat stress. Physiologia Plantarum, 115, 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Krishna, P. (2003). Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation, 22, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling, Q., Huangm, W., & Jarvis, P. (2011). Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthetic Research, 107, 209–214.

    Article  CAS  Google Scholar 

  • Lopes, M. S., & Reynolds, M. P. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63, 3789–3798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences, 37, 118–125.

    Article  CAS  PubMed  Google Scholar 

  • Ocheltree, T. W., Nippert, J. B., & Prasad, P. V. V. (2014). Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant, Cell and Environment, 37(1), 132–139.

    Article  CAS  PubMed  Google Scholar 

  • Parent, B., & Tardieu, F. (2012). Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist, 194, 760–774.

    Article  PubMed  Google Scholar 

  • Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieruschka, R., Albrecht, H., Muller, O., Berry, J. A., Klimov, D., Kolber, Z. S., et al. (2014). Daily and seasonal dynamics of remotely sensed photosynthetic efficiency in tree canopies. Tree Physiology, 34, 674–685.

    Article  PubMed  Google Scholar 

  • Reynolds, M. P., & Trethowan, R. M. (2007). Physiological interventions in breeding for adaptation to abiotic stress. In J. H. J. Spiertz, P. C. Struik & H. H. van Laar (Eds.), Scale and complexity in plant systems research: Gene-plant-crop relations, Wageningen UR frontis series, Springer (pp. 129–146).

  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Article  CAS  PubMed  Google Scholar 

  • Saidi, Y., Finka, A., & Goloubinoff, P. (2011). Heat perception and signalling in plants: A tortuous path to thermotolerance. New Phytologist, 190, 556–565.

    Article  CAS  PubMed  Google Scholar 

  • Sailaja, B., Subrahmanyam, D., Neelamraju, S., Vishnukiran, T., Rao, Y. V., Vijayalakshmi, P., et al. (2015). Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Frontiers in plant science,. doi:10.3389/fpls.2015.01044.

    PubMed  PubMed Central  Google Scholar 

  • Sharkey, T. D., & Zhang, R. (2010). High temperature effects on electron and proton circuits of photosynthesis. Journal of Integrative Plant Biology, 52, 712–722.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Q., Bao, Z., Zhu, Z., Ying, Q., & Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48, 127–135.

    Article  CAS  Google Scholar 

  • Shi, W., Muthurajan, R., Rahman, H., Selvam, J., Peng, S., Zou, Y., et al. (2013). Source–sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytologist, 197, 825–837.

    Article  CAS  PubMed  Google Scholar 

  • Streck, N. A., Rosa, H. T., Walter, L. C., Silva, M. R. D., & Uhlmann, L. O. (2012). CO2-response function of radiation use efficiency in rice for climate change scenarios. Pesquisa Agropecuária Brasileira, 47, 879–885.

    Article  Google Scholar 

  • Tan, W., Meng, Q., Brestic, M., Olsovska, K., & Yang, X. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168, 2063–2071.

    Article  CAS  PubMed  Google Scholar 

  • Tawfik, A. A., Kleinhenz, M. D., & Palta, J. P. (1996). Application of calcium and nitrogen for mitigating heat stress effects on potatoes. American Journal of Potato Research, 73, 261–273.

    Article  Google Scholar 

  • Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206–215.

    Article  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.

    Article  Google Scholar 

  • Wang, L. J., & Li, S. H. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science, 170, 685–694.

    Article  CAS  Google Scholar 

  • Wang, Y., Yu, Q. Y., Tang, X. X., & Wang, L. L. (2009). Calcium pretreatment increases thermotolerance of Laminaria japonica sporophytes. Progress in Natural Science, 19, 435–442.

    Article  Google Scholar 

  • Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., et al. (2009). Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 101, pp. 59–122). Burlington: Academic Press.

    Google Scholar 

  • Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences, 107, 14562–14567.

    Article  CAS  Google Scholar 

  • Xiong, D., Yu, T., Ling, X., Fahad, S., Peng, S., Li, Y., et al. (2015). Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments. Functional Plant Biology, 42(4), 347–356.

    Article  CAS  Google Scholar 

  • Zhu, G., Peng, S., Huang, J., Cui, K., Nie, L., & Wang, F. (2016). Genetic improvements in rice yield and concomitant increases in radiation-and nitrogen-use efficiency in middle reaches of Yangtze river. Scientific Reports,. doi:10.1038/srep21049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madan Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahuguna, R.N., Chaturvedi, A.K. & Pal, M. Physiological traits for improving high temperature stress tolerance in rice. Ind J Plant Physiol. 21, 420–427 (2016). https://doi.org/10.1007/s40502-016-0253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0253-0

Keywords

Navigation