Skip to main content

Advertisement

Log in

New Insights in Dermatophytes: Microsporum spp. and Nannizzia spp.

  • Tropical Mycoses (L Martinez, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Species of the Microsporum and Nannizzia complexes are some of the etiological agents of dermatophytosis, an important cutaneous infection that affects humans and other mammals and whose incidence is increasing worldwide. This article aims to review the pertinent knowledge about dermatophytosis, specifically with these etiological agents.

Recent Findings

The immunological mechanisms involved in the prevention and control of these infections are not fully understood. Many reports suggest that the mammalian immune system evolved with the interaction of these pathogens, and the infection depends directly on the virulence of the strain, geographic location, and environmental resources. As virulence factors, thermotolerance, melanin production, and cell wall components stand out. Treatment for dermatophytosis includes the use of topical or systemic drugs.

Summary

These fungi present an increasing risk in human health care; studies in physiology, genetics and biochemistry, pathology of dermatophytosis, and immune response are essential for the development of new diagnostic measures, treatment protocols, and prevention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dahdah MJ, Scher RK. Dermatophytes. Curr Fungal Infect Rep. 2008;2:81–6. https://doi.org/10.1007/s12281-008-0013-3.

    Article  Google Scholar 

  2. de Hoog S, Monod M, Dawson T, Boekhout T, Mayser P, Gräser Y. Skin fungi from colonization to infection. Microbiol Spectr. 2017;5. https://doi.org/10.1128/microbiolspec.funk-0049-2016.

  3. • Gnat S, Łagowski D, Nowakiewicz A. Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. J Appl Microbiol 2020:jam.14611. https://doi.org/10.1111/jam.14611. This review focuses on the main problems in the diagnosis of infections caused by dermatophytes and indicates strategies and future perspectives for new identification approaches and new drugs for the control of dermatophytosis.

  4. Begum J, Mir NA, Lingaraju MC, Buyamayum B, Dev K. Recent advances in the diagnosis of dermatophytosis. J Basic Microbiol. 2020;60:293–303. https://doi.org/10.1002/jobm.201900675 This study provides a description of the importance of rapid and accurate diagnosis of dermatophytosis, as well as the limitations of conventional methods.

    Article  PubMed  Google Scholar 

  5. Elavarashi E, Kindo AJ, Rangarajan S. Enzymatic and non-enzymatic virulence activities of dermatophytes on solid media. J Clin Diagn Res. 2017;11:DC23. https://doi.org/10.7860/JCDR/2017/23147.9410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flores D, Lana D, Gerardon Batista B, Alves SH, Meneghello FA. Dermatophytoses: etiologic agents, clinical forms, therapy and new perspectives of treatment. Clin Biomed Res. 2016;36:230–41. https://doi.org/10.4322/2357-9730.68880.

    Article  Google Scholar 

  7. Hay RJ. How do dermatophytes survive in the epidermis? Curr Opin Infect Dis. 2006;19:125–6. https://doi.org/10.1097/01.qco.0000216621.98197.b4.

    Article  PubMed  Google Scholar 

  8. Leung AKC, Hon KL, Leong KF, Barankin B, Lam JM. Tinea capitis: an updated review. Recent Patents Inflamm Allergy Drug Discov. 2020;14:58–68. https://doi.org/10.2174/1872213x14666200106145624.

    Article  CAS  Google Scholar 

  9. Al Aboud AM, Crane JS. Tinea capitis. StatPearls Publishing; 2020.

  10. Hay RJ. Tinea Capitis: Current status. Mycopathologia. 2017;182:87–93. https://doi.org/10.1007/s11046-016-0058-8.

    Article  CAS  PubMed  Google Scholar 

  11. Mayser P, Nenoff P, Reinel D, Abeck D, Brasch J, Daeschlein G, et al. S1 guidelines: Tinea capitis. JDDG J Der Dtsch Dermatologischen Gesellschaft. 2020;18:161–79. https://doi.org/10.1111/ddg.14026.

    Article  Google Scholar 

  12. Degreef H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia. 2008;166:257–65. https://doi.org/10.1007/s11046-008-9101-8.

    Article  PubMed  Google Scholar 

  13. Kirsten H, Haiduk J, Nenoff P, Uhrlaß S, Ziemer M, Simon JC. Tinea barbae profunda due to Trichophyton mentagrophytes : Case report and review. Hautarzt. 2019;70:601–11. https://doi.org/10.1007/s00105-019-4407-7.

    Article  CAS  PubMed  Google Scholar 

  14. Xavier MH, Torturella DM, Rehfeldt FV, Alvariño CR, Gaspar NN, Rochael MC, et al. Sycosiform tinea barbae caused by Trichophyton rubrum. Dermatol Online J. 2008;14:10.

    PubMed  Google Scholar 

  15. Sahoo A, Mahajan R. Management of tinea corporis, tinea cruris, and tinea pedis: a comprehensive review. Indian Dermatol Online J. 2016;7:77. https://doi.org/10.4103/2229-5178.178099.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gürtler TGR, Diniz LM, Nicchio L. Microepidemia de tinha do couro cabeludo por Microsporum canis em creche de Vitória - Espírito Santo (Brasil). An Bras Dermatol. 2005;80:267–72. https://doi.org/10.1590/s0365-05962005000300007.

    Article  Google Scholar 

  17. Gava T, Gürtler R, Martins Diniz L, Nicchio L. Microepidemia de tinha do couro cabeludo por Microsporum canis em creche de Vitória-Espírito Santo (Brasil) * Tinea capitis micro-epidemic by Microsporum canis in a day care center of Vitória-Espírito Santo (Brazil) * Caso Clínico 267. vol. 80. 2005.

  18. Gupta AK, Mays RR, Versteeg SG, Piraccini BM, Shear NH, Piguet V, et al. Tinea capitis in children: a systematic review of management. J Eur Acad Dermatol Venereol. 2018;32:2264–74. https://doi.org/10.1111/jdv.15088.

    Article  CAS  PubMed  Google Scholar 

  19. Shy R. Tinea Corporis and Tinea Capitis. Pediatr Rev. 2007;28:164–74. https://doi.org/10.1542/pir.28-5-164.

    Article  PubMed  Google Scholar 

  20. Denk L, Tinea corporis. Pediatr. Clin Advis. 2007:562–3. https://doi.org/10.1016/B978-032303506-4.10327-X.

  21. Kakurai M, Harada K, Maeda T, Hiruma J, Kano R, Demitsu T. Case of tinea corporis due to terbinafine-resistant Trichophyton interdigitale. J Dermatol. 2020;47:e104–5. https://doi.org/10.1111/1346-8138.15243.

    Article  PubMed  Google Scholar 

  22. Sahu P, Dayal S, Mawlong P, Punia P, Sen R. Tinea corporis bullosa secondary to trichophyton verrucosum: A newer etiological agent with literature review. Indian J Dermatol. 2020;65:76–8. https://doi.org/10.4103/ijd.IJD_483_19.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Licata G, Gambardella A, De Rosa A, Alfano R, Argenziano G. A case of tinea corporis by Epidermophyton floccosum mimicking Herpes zoster. G Ital Dermatol Venereol. 2020. https://doi.org/10.23736/S0392-0488.19.06435-6.

  24. Saxena V, Shenoy M, Devrari J, Pai V, Agrawal V. A mycological study of tinea corporis: A changing epidemiological trend from Trichophyton rubrum to Trichophyton mentagrophytes in India. Indian J Dermatol Venereol Leprol. 2020;0:0. https://doi.org/10.4103/ijdvl.ijdvl_766_17.

    Article  Google Scholar 

  25. Gupta AK, Chaudhry M, Elewski B. Tinea corporis, tinea cruris, tinea nigra, and piedra. Dermatol Clin. 2003;21:395–400. https://doi.org/10.1016/S0733-8635(03)00031-7.

    Article  PubMed  Google Scholar 

  26. Pippin MM, Madden ML. Tinea Cruris. 2020.

    Google Scholar 

  27. Hazlianda C, Muis K, Lubis I. A comparative study of polymerase chain reaction-restriction fragment length polymorphism and fungal culture for the evaluation of fungal species in patients with Tinea Cruris. Open Access Maced J Med Sci. 2017;5:844–7. https://doi.org/10.3889/oamjms.2017.197.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Otero L, Palacio V, Vázquez F. Tinea cruris in female prostitutes. Mycopathologia. 2002;153:29–31. https://doi.org/10.1023/A:1015257320824.

    Article  CAS  PubMed  Google Scholar 

  29. Alkeswani A, Duncan JR, Theos A. Tinea faciei starting at day two of life. Pediatr Dermatol. 2018;36:pde.13724. https://doi.org/10.1111/pde.13724.

    Article  Google Scholar 

  30. Yamada A, Noguchi H, Sakae H, Ogawa Y, Hiruma M. Tinea faciei caused by Trichophyton verrucosum in a 20-month-old female: Case report and summary of reported cases in Japan. J Dermatol. 2012;39:667–9. https://doi.org/10.1111/j.1346-8138.2011.01369.x.

    Article  PubMed  Google Scholar 

  31. Kobayashi H. Tinea corporis and tinea pedis. Jpn J Med Mycol. 2011;52:177–81. https://doi.org/10.3314/mmj.52.177.

    Article  Google Scholar 

  32. Veraldi S, Schianchi R, Benzecry V, Gorani A. Tinea manuum: A report of 18 cases observed in the metropolitan area of Milan and review of the literature. Mycoses. 2019;62:604–8. https://doi.org/10.1111/myc.12914.

    Article  PubMed  Google Scholar 

  33. Drira I, Neji S, Hadrich I, Sellami H, Makni F, Ayadi A. Tinea manuum due to Trichophyton erinacei from Tunisia. J Mycol Med. 2015;25:200–3. https://doi.org/10.1016/j.mycmed.2015.05.001.

    Article  CAS  PubMed  Google Scholar 

  34. Choi E, Huang J, Chew KL, Jaffar H, Tan C. Pustular tinea manuum from Trichophyton erinacei infection. JAAD Case Reports. 2018;4:518–20. https://doi.org/10.1016/j.jdcr.2018.01.019.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Asz-Sigall D, Tosti A, Arenas R. Tinea Unguium: Diagnosis and Treatment in Practice. Mycopathologia. 2017;182:95–100. https://doi.org/10.1007/s11046-016-0078-4.

    Article  CAS  PubMed  Google Scholar 

  36. Leung AKC, Leong KF, Lam JM. Tinea imbricata: an overview. Curr Pediatr Rev. 2019;15:170–4. https://doi.org/10.2174/1573396315666190207151941.

    Article  PubMed  Google Scholar 

  37. Teo TSP, Crawford LC, Pilch WT, Carney B, Solanki N, Kidd SE, et al. Mycetoma caused by Microsporum canis in a patient with renal transplant: a case report and review of the literature. Transpl Infect Dis. 2021;23:e13516. https://doi.org/10.1111/TID.13516.

    Article  PubMed  Google Scholar 

  38. Kwon-Chung KJ, Bennett JE. Medical mycology. Rev Inst Med Trop Sao Paulo. 1992;34:504–4. https://doi.org/10.1590/S0036-46651992000600018.

    Article  Google Scholar 

  39. Sybren G, Karolina H, Michel D, Ann M, Dirk P, Marijke S, et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia. 2017;182:5–31. https://doi.org/10.1007/s11046-016-0073-9.

    Article  Google Scholar 

  40. Enoch DA, Yang H, Aliyu SH, Micallef C. The changing epidemiology of invasive fungal infections. Methods Mol. Biol., vol. 1508, Humana Press Inc.; 2017, p. 17–65. https://doi.org/10.1007/978-1-4939-6515-1_2.

  41. Martínez E, Ameen M, Tejada D, Arenas R. Microsporum spp. onychomycosis: disease presentation, risk factors and treatment responses in an urban population. Brazilian. J Infect Dis. 2014;18:181–6. https://doi.org/10.1016/j.bjid.2013.08.005.

    Article  Google Scholar 

  42. da Cunha MM, Capote-Bonato F, Capoci IRG, Bonato DV, Ghizzi LG, Paiva-Lima P, et al. Epidemiological investigation and molecular typing of dermatophytosis caused by Microsporum canis in dogs and cats. Prev Vet Med. 2019;167:39–45. https://doi.org/10.1016/j.prevetmed.2019.03.019.

    Article  PubMed  Google Scholar 

  43. Gnat S, Łagowski D, Nowakiewicz A, Zięba P. Tinea corporis by Microsporum canis in mycological laboratory staff: unexpected results of epidemiological investigation. Mycoses. 2018;61:945–53. https://doi.org/10.1111/myc.12832.

    Article  PubMed  Google Scholar 

  44. Yu J, Wan Z, Chen W, Wang W, Li R. Molecular typing study of the Microsporum canis strains isolated from an outbreak of tinea capitis in a school. Mycopathologia. 2004;157:37–41. https://doi.org/10.1023/b:myco.0000012221.66851.68.

    Article  CAS  PubMed  Google Scholar 

  45. Ali S, Gajjala S, Raj A. Study of prevalence of dermatophytes among human immunodeficiency virus/AIDS patients in Shadan Institute of Medical Sciences and Teaching Hospital and Research Centre, Hyderabad, Telangana, India. Indian J Sex Transm Dis AIDS. 2018;39:98. https://doi.org/10.4103/ijstd.ijstd_103_16.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Skerlev M, Miklić P. The changing face of Microsporum spp infections. Clin Dermatol. 2010;28:146–50. https://doi.org/10.1016/j.clindermatol.2009.12.007.

    Article  PubMed  Google Scholar 

  47. García-Martos P, Ruiz-Aragón J, García-Agudo L, Linares M. Dermatophytoses due to Microsporum gypseum: report of eight cases and literature review. Rev Iberoam Micol. 2004;21:147–9.

    PubMed  Google Scholar 

  48. Luque A, Biasoli M, Sortino M, Lupo S, Bussy R. Atypical tinea corporis caused by Microsporum gypseum in a subject with acquired immune deficiency syndrome. J Eur Acad Dermatol Venereol. 2001;15:374–5. https://doi.org/10.1046/j.0926-9959.2001.00294-14.x.

    Article  CAS  PubMed  Google Scholar 

  49. Giudice MC, Szeszs MW, Scarpini RL, Ninomyia A, Trifilio MO, Pinto WP, et al. Clinical and epidemiological study in an AIDS patient with Microsporum gypseum infection. Rev Iberoam Micol. 1997;14:184–7.

    CAS  PubMed  Google Scholar 

  50. Singh I, Dixit AK, Kushwaha RKS. Antagonism of Microsporum species by soil fungi. Mycoses. 2010;53:32–9. https://doi.org/10.1111/j.1439-0507.2008.01656.x.

    Article  CAS  PubMed  Google Scholar 

  51. Soankasina AH, Rakotozandrindrainy N, Andrianteloasy S, Zafindraibe NJ, Rasamoelina T, Rafalimanana C, et al. Dermatophyte infection caused by Nannizzia gypsea: A rare case report from Madagascar. Med Mycol Case Rep. 2018;20:7–9. https://doi.org/10.1016/j.mmcr.2017.12.001.

    Article  PubMed  Google Scholar 

  52. Martinez-Rossi NM, Peres NTA, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia. 2008;166:369–83. https://doi.org/10.1007/s11046-008-9110-7.

    Article  PubMed  Google Scholar 

  53. Martinez-Rossi NM, Peres NTA, Rossi A. Pathogenesis of dermatophytosis: sensing the host tissue. Mycopathologia. 2017;182:215–27. https://doi.org/10.1007/s11046-016-0057-9.

    Article  CAS  PubMed  Google Scholar 

  54. de la Calle-Rodríguez N, Santa-Vélez C, Cardona-Castro N. Factores de virulencia para la infección de tejidos queratinizados por Candida albicans y hongos dermatofitos. Rev CES Med. 2012;26:43–55.

    Google Scholar 

  55. Muszewska A, Piłsyk S, Perlí nska-Lenart U, Kruszewska JS. Diversity of cell wall related proteins in human pathogenic fungi 2017. https://doi.org/10.3390/jof4010006.

  56. Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture downloaded from 2020. https://doi.org/10.1128/mBio.

  57. Mercer DK, Stewart CS. Keratin hydrolysis by dermatophytes. Med Mycol. 2019;57:13–22. https://doi.org/10.1093/MMY/MYX160.

    Article  CAS  PubMed  Google Scholar 

  58. Cesar Viani F, Regina Cazares Viani P, Nelly Gutierrez Rivera I, Gonçalves da Silva É, Rodrigues Paula C, Gambale W. Extracellular proteolytic activity and molecular analysis of Microsporum canis strains isolated from symptomatic and asymptomatic cats. vol. 24. 2007.

  59. Cole MF. Unifying microbial mechanisms. Garland. Science. 2019. https://doi.org/10.1201/9780429262777.

  60. Hamaguchi T, Morishita N, Usui R, Takiuchi I. Characterization of an extracellular keratinase from Microsporum canis. Nippon Ishinkin Gakkai Zasshi. 2000;41:257–62. https://doi.org/10.3314/JJMM.41.257.

    Article  CAS  Google Scholar 

  61. Ramos MLM, Coelho RA, Brito-Santos F, Guimarães D, Premazzi M, Zancopé-Oliveira RM, et al. Comparative analysis of putative virulence-associated factors of Microsporum canis isolates from human and animal patients. Mycopathologia. 2020;185:665–73. https://doi.org/10.1007/s11046-020-00470-9.

    Article  CAS  PubMed  Google Scholar 

  62. Kibbler CC, Barton R, Gow NAR, Howell S, Maccallum DM, Manuel RJ. Fungal cell structure and organization. 2018. https://doi.org/10.1093/med/9780198755388.001.0001.

  63. Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. Cell Microbiol. 2003;5:203–23. https://doi.org/10.1046/j.1462-5814.2003.00268.x.

    Article  CAS  PubMed  Google Scholar 

  64. Eisenman HC, Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol. 2012;93:931–40. https://doi.org/10.1007/s00253-011-3777-2.

    Article  CAS  PubMed  Google Scholar 

  65. Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology. 2009;155:3860–7. https://doi.org/10.1099/mic.0.032854-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Youngchim S, Hay RJ, Hamilton AJ. Melanization of Penicillium marneffei in vitro and in vivo. Microbiology. 2005;151:291–9. https://doi.org/10.1099/mic.0.27433-0.

    Article  CAS  PubMed  Google Scholar 

  67. Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun. 2000;68:3696–703. https://doi.org/10.1128/IAI.68.6.3696-3703.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nosanchuk JD, Gómez BL, Youngchim S, Díez S, Aisen P, Zancopé-Oliveira RM, et al. Histoplasma capsulatum synthesizes melanin-like pigments in vitro and during mammalian infection. Infect Immun. 2002;70:5124–31. https://doi.org/10.1128/IAI.70.9.5124-5131.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Youngchim S, Pornsuwan S, Nosanchuk JD, Dankai W, Vanittanakom N. Melanogenesis in dermatophyte species in vitro and during infection. 2011;157:2348–56. https://doi.org/10.1099/mic.0.047928-0.

    Article  CAS  Google Scholar 

  70. Malavazi I, Goldman GH, Brown NA. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Br Funct Genomics. 2014;13:456.

    Article  CAS  Google Scholar 

  71. Osherov N, Yarden O. The cell wall of filamentous fungi. Cell Mol Biol. 2014:224–37. https://doi.org/10.1128/9781555816636.ch17.

  72. Rashid Achterman R, White TC. Dermatophyte virulence factors: identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J Microbiol. 2012;2012. https://doi.org/10.1155/2012/358305.

  73. Kurokawa CS, Sugizaki MF, Peraçoli MTS. Virulence factors in fungi of systemic mycoses. Rev Inst Med Trop Sao Paulo. 1998;40:125–35. https://doi.org/10.1590/s0036-46651998000300001.

    Article  CAS  PubMed  Google Scholar 

  74. Percival SL, Emanuel C, Cutting KF, Williams DW. Microbiology of the skin and the role of biofilms in infection. Int Wound J. 2012;9:14–32. https://doi.org/10.1111/j.1742-481X.2011.00836.x.

    Article  PubMed  Google Scholar 

  75. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33. https://doi.org/10.1038/nrmicro2415.

    Article  CAS  PubMed  Google Scholar 

  76. Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int. J Microbiol. 2012;2012:14. https://doi.org/10.1155/2012/528521.

    Article  CAS  Google Scholar 

  77. Danielli LJ, Lopes W, Vainstein MH, Fuentefria AM, Apel MA. Biofilm formation by Microsporum canis. Clin Microbiol Infect. 2017;23:941–2. https://doi.org/10.1016/j.cmi.2017.06.006.

    Article  CAS  PubMed  Google Scholar 

  78. Costa-Orlandi CB, Sardi JCO, Santos CT, Fusco-Almeida AM, Mendes M. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling. 2014;30:719–27. https://doi.org/10.1080/08927014.2014.919282.

    Article  CAS  PubMed  Google Scholar 

  79. Brilhante RSN, Aguiar L de, Sales JA, Araújo G dos S, Pereira VS, Pereira-Neto W de A, et al. Ex vivo biofilm-forming ability of dermatophytes using dog and cat hair: an ethically viable approach for an infection model. Biofouling 2019;35:392–400. https://doi.org/10.1080/08927014.2019.1599361.

  80. Chen B, Sun Y, Zhang J, Chen R, Zhong X, Wu X, et al. In vitro evaluation of photodynamic effects against biofilms of dermatophytes involved in onychomycosis. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.01228.

  81. Nogueira Brilhante RS, Correia EEM, De Melo Guedes GM, Pereira VS, De Oliveira JS, Bandeira SP, et al. Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes. J Med Microbiol. 2017;66:1045–52. https://doi.org/10.1099/jmm.0.000528.

    Article  Google Scholar 

  82. Brilhante RSN, Correia EEM, Guedes GM de M, de Oliveira JS, Castelo-Branco D de SCM, Cordeiro R de A, et al. In vitro activity of azole derivatives and griseofulvin against planktonic and biofilm growth of clinical isolates of dermatophytes. Mycoses 2018;61:449–454. https://doi.org/10.1111/myc.12763.

  83. •• Celestrino GA, Veasey JV, Benard G, Sousa MGT. Host immune responses in dermatophytes infection. Mycoses 2021;64:477–83. https://doi.org/10.1111/MYC.13246. This review describes the main findings about the immune response against dermatophytes and points out gaps in this knowledge.

  84. Gnat S, Łagowski D, Nowakiewicz A, Zięba P. Phenotypic characterization of enzymatic activity of clinical dermatophyte isolates from animals with and without skin lesions and humans. J Appl Microbiol. 2018;125:700–9. https://doi.org/10.1111/jam.13921.

    Article  CAS  PubMed  Google Scholar 

  85. Chinnapun D. Virulence factors involved in pathogenicity of dermatophytes. vol. 12. 2015.

  86. Khurana A, Sardana K, Chowdhary A. Antifungal resistance in dermatophytes: recent trends and therapeutic implications, vol. 132: Academic Press Inc.; 2019. https://doi.org/10.1016/j.fgb.2019.103255.

    Book  Google Scholar 

  87. Kaul S, Yadav S, Dogra S. Treatment of dermatophytosis in elderly, children, and pregnant women. Indian Dermatol Online J. 2017;8:310. https://doi.org/10.4103/idoj.idoj_169_17.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Filho ST, Cucé LC, Foss NT, Marques SA, Santamaria JR. Efficacy, safety and tolerability of terbinafine for Tinea capitis in children: Brazilian multicentric study with daily oral tablets for 1, 2 and 4 weeks. J Eur Acad Dermatol Venereol. 1998;11:141–6. https://doi.org/10.1111/j.1468-3083.1998.tb00767.x.

    Article  CAS  PubMed  Google Scholar 

  89. Bar J, Samuelov L, Sprecher E, Mashiah J. Griseofulvin vs terbinafine for paediatric tinea capitis: when and for how long. Mycoses. 2019;62:949–53. https://doi.org/10.1111/myc.12970.

    Article  CAS  PubMed  Google Scholar 

  90. Calles Monar PS, Juárez MA. Eyelid tinea with blepharitis due to Microsporum canis. Arch Soc Esp Oftalmol. 2018;93:491–3. https://doi.org/10.1016/j.oftal.2018.04.005.

    Article  CAS  PubMed  Google Scholar 

  91. Gupta AK, Dlova N, Taborda P, Morar N, Taborda V, Lynde CW, et al. Once weekly fluconazole is effective in children in the treatment of tinea capitis: a prospective, multicentre study. Br J Dermatol. 2000;142:965–8. https://doi.org/10.1046/j.1365-2133.2000.03479.x.

    Article  CAS  PubMed  Google Scholar 

  92. Ginter-Hanselmayer G, Smolle J, Gupta A. Itraconazole in the treatment of tinea capitis caused by Microsporum canis: experience in a large cohort. Pediatr Dermatol. 2004;21:499–502. https://doi.org/10.1111/j.0736-8046.2004.21419.x.

    Article  PubMed  Google Scholar 

  93. Tanz RR, Hebert AA, Esterly NB. Treating tinea capitis: should ketoconazole replace griseofulvin? J Pediatr. 1988;112:987–91. https://doi.org/10.1016/S0022-3476(88)80232-4.

    Article  CAS  PubMed  Google Scholar 

  94. Moriello KA. In vitro efficacy of shampoos containing miconazole, ketoconazole, climbazole or accelerated hydrogen peroxide against Microsporum canis and Trichophyton species. J Feline Med Surg. 2017;19:370–4. https://doi.org/10.1177/1098612X15626197.

    Article  PubMed  Google Scholar 

  95. Dias M, Quaresma-Santos M, Bernardes-Filho F, Amorim A, Schechtman RC, Azulay DR. Update on therapy for superficial mycoses: review article part I. An Bras Dermatol. 2013;88:764–74. https://doi.org/10.1590/abd1806-4841.20131996.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Olson JM, Belgam Syed SY, Goyal A. Microtubule assembly inhibitors (Griseofulvin): StatPearls Publishing; 2020.

    Google Scholar 

  97. Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, et al. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 2017;8:36. https://doi.org/10.3389/fmicb.2017.00036.

  98. Yamada T, Maeda M, Alshahni MM, Tanaka R, Yaguchi T, Bontems O, et al. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob Agents Chemother. 2017;61. https://doi.org/10.1128/AAC.00115-17.

  99. Majid I, Sheikh G, Kanth F, Hakak R. Relapse after oral terbinafine therapy in dermatophytosis: a clinical and mycological study. Indian J Dermatol. 2016;61:529. https://doi.org/10.4103/0019-5154.190120.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes EV, Quaresemin NR, et al. Dermatophyte resistance to antifungal drugs: mechanisms and prospectus. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.01108.

  101. Abu El-Hamd M, Abd Elhameed MI, Shalaby MFM, Saleh R. In vitro antifungal susceptibility testing of fungi in patients with onychomycosis. Dermatol Ther. 2020;33. https://doi.org/10.1111/dth.13429.

  102. Hsiao Y-HH, Chen C, Han HS, Kano R, Siew HANH, Kano R. The first report of terbinafine resistance Microsporum canis from a cat. Jpn Soc Vet Sci. 2018;80. https://doi.org/10.1292/jvms.17-0680.

  103. Dogra S, Shaw D, Rudramurthy S. Antifungal drug susceptibility testing of dermatophytes: laboratory findings to clinical implications. Indian Dermatol Online J. 2019;10:225. https://doi.org/10.4103/idoj.idoj_146_19.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Brauer VS, Rezende CP, Pessoni AM, De Paula RG, Rangappa KS, Nayaka SC, et al. Antifungal agents in agriculture: friends and foes of public health. Biomolecules. 2019;9. https://doi.org/10.3390/biom9100521.

  105. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science. 2018;360:739–42. https://doi.org/10.1126/science.aap7999.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Frases.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Tropical Mycoses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junior, D.C., Ramos, M.L.M., Almeida-Paes, R. et al. New Insights in Dermatophytes: Microsporum spp. and Nannizzia spp.. Curr Trop Med Rep 9, 15–27 (2022). https://doi.org/10.1007/s40475-022-00252-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-022-00252-x

Keywords

Navigation