Skip to main content
Log in

Synthesis and assembly of fungal melanin

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Melanin is a unique pigment with myriad functions that is found in all biological kingdoms. It is multifunctional, providing defense against environmental stresses such as ultraviolet (UV) light, oxidizing agents and ionizing radiation. Melanin contributes to the ability of fungi to survive in harsh environments. In addition, it plays a role in fungal pathogenesis. Melanin is an amorphous polymer that is produced by one of two synthetic pathways. Fungi may synthesize melanin from endogenous substrate via a 1,8-dihydroxynaphthalene (DHN) intermediate. Alternatively, some fungi produce melanin from l-3,4-dihydroxyphenylalanine (l-dopa). The detailed chemical structure of melanin is not known. However, microscopic studies show that it has an overall granular structure. In fungi, melanin granules are localized to the cell wall where they are likely cross-linked to polysaccharides. Recent studies suggest the fungal melanin may be synthesized in internal vesicles akin to mammalian melanosomes and transported to the cell wall. Potential applications of melanin take advantage of melanin's radioprotective properties and propensity to bind to a variety of substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida-Paes R, Frases S, Fialho Monteiro PC, Gutierrez-Galhardo MC, Zancope-Oliveira RM, Nosanchuk JD (2009) Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates. Microbes Infect 11:554–562

    CAS  Google Scholar 

  • Bailao AM, Schrank A, Borges CL, Dutra V, Molinari-Madlum EEWI, Felipe MSS, Mendes-Giannini MJS, Martins WS, Pereira M, de Almeida M, Soares C (2006) Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect 8:2686–2697

    CAS  Google Scholar 

  • Baker LG, Specht CA, Donlin MJ, Lodge JK (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6:855–867

    CAS  Google Scholar 

  • Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK (2005) A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 4:1902–1912

    CAS  Google Scholar 

  • Bocca AL, Brito PP, Figueiredo F, Tosta CE (2006) Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin. Mycopathologia 161:195–203

    CAS  Google Scholar 

  • Bull AT (1970) Inhibition of polysaccharases by melanin: enzyme inhibition in relation to mycolysis. Arch Biochem Biophys 137:345–356

    CAS  Google Scholar 

  • Butler MJ, Day AW (1998a) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    CAS  Google Scholar 

  • Butler, MJ, Day AW (1998b) Destruction of fungal melanins by ligninases of Phanerochaete chrysosporium and other white rot fungi. Int J Plant Sci 159:989–995

    Google Scholar 

  • Butler MJ, Gardiner RB, Day AW (2005) Degradation of melanin or inhibition of its synthesis: are these a significant approach as a biological control of phytopathogenic fungi? Biol Control 32:326–336

    Google Scholar 

  • Caesar-Tonthat T, Van Ommen KF, Geesey GG, Henson JM (1995) Melanin production by a filamentous soil fungus in response to copper and localization of copper sulfide by sulfide-silver staining. Appl Environ Microbiol 61:1968–1975

    CAS  Google Scholar 

  • Chai LY, Netea MG, Sugui J, Vonk AG, van de Sande WW, Warris A, Kwon-Chung KJ, Kullberg BJ (2010) Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 215:915–920

    CAS  Google Scholar 

  • Chen Z, Nunes MA, Silva MC, Rodrigues CJ Jr (2004) Appressorium turgor pressure of Colletotrichum kahawae might have a role in coffee cuticle penetration. Mycologia 96:1199–1208

    Google Scholar 

  • Clancy CM, Simon JD (2001) Ultrastructural organization of eumelanin from Sepia officinalis measured by atomic force microscopy. Biochemistry 40:13353–13360

    CAS  Google Scholar 

  • Cunha MM, Franzen AJ, Alviano DS, Zanardi E, Alviano CS, De Souza W, Rozental S (2005) Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of Fonsecaea pedrosoi against mouse macrophages. Microsc Res Tech 68:377–384

    CAS  Google Scholar 

  • Cunha MM, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, de Souza W, Rozental S (2010) Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol 10:80

    Google Scholar 

  • da Silva MB, Marques AF, Nosanchuk JD, Casadevall A, Travassos LR, Taborda CP (2006) Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect 8:197–205

    Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2:e457

    Google Scholar 

  • Diaz P, Gimeno Y, Carro P, Gonzalez S, Schilardi PL, Benitez G, Salvarezza RC, Creus AH (2005) Electrochemical self-assembly of melanin films on gold. Langmuir 21:5924–5930

    CAS  Google Scholar 

  • Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120

    CAS  Google Scholar 

  • Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A (2009) Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 155:3860–3867

    CAS  Google Scholar 

  • Eisenman HC, Mues M, Weber SE, Frases S, Chaskes S, Gerfen G, Casadevall A (2007) Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and l-DOPA. Microbiology 153:3954–3962

    CAS  Google Scholar 

  • Eisenman HC, Nosanchuk JD, Webber JB, Emerson RJ, Camesano TA, Casadevall A (2005) Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44:3683–3693

    CAS  Google Scholar 

  • Enochs WS, Nilges MJ, Swartz HM (1993) A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Res 6:91–99

    CAS  Google Scholar 

  • Fowler ZL, Baron CM, Panepinto JC, Koffas MA (2011) Melanization of flavonoids by fungal and bacterial laccases. Yeast 28:181–188

    CAS  Google Scholar 

  • Franzen AJ, Cunha MM, Batista EJ, Seabra SH, De Souza W, Rozental S (2006) Effects of tricyclazole (5-methyl-1,2,4-triazol[3,4] benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells. Microsc Res Tech 69:729–737

    CAS  Google Scholar 

  • Franzen AJ, Cunha MM, Miranda K, Hentschel J, Plattner H, da Silva MB, Salgado CG, de Souza W, Rozental S (2008) Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi. J Struct Biol 162:75–84

    CAS  Google Scholar 

  • Franzen AJ, de Souza W, Farina M, Alviano CS, Rozental S (1999) Morphometric and densitometric study of the biogenesis of electron-dense granules in Fonsecaea pedrosoi. FEMS Microbiol Lett 173:395–402

    CAS  Google Scholar 

  • Frases S, Chaskes S, Dadachova E, Casadevall A (2006) Induction by Klebsiella aerogenes of a melanin-like pigment in Cryptococcus neoformans. Appl Environ Microbiol 72:1542–1550

    CAS  Google Scholar 

  • Frases S, Salazar A, Dadachova E, Casadevall A (2007) Cryptococcus neoformans can utilize the bacterial melanin precursor homogentisic acid for fungal melanogenesis. Appl Environ Microbiol 73:615–621

    CAS  Google Scholar 

  • Gachomo EW, Seufferheld MJ, Kotchoni SO (2010) Melanization of appressoria is critical for the pathogenicity of Diplocarpon rosae. Mol Biol Rep 37:3583–3591

    CAS  Google Scholar 

  • Garcia-Rivera J, Eisenman HC, Nosanchuk JD, Aisen P, Zaragoza O, Moadel T, Dadachova E, Casadevall A (2005) Comparative analysis of Cryptococcus neoformans acid-resistant particles generated from pigmented cells grown in different laccase substrates. Fungal Genet Biol 42:989–998

    CAS  Google Scholar 

  • Griffith GW, Easton GL, Detheridge A, Roderick K, Edwards A, Worgan HJ, Nicholson J, Perkins WT (2007) Copper deficiency in potato dextrose agar causes reduced pigmentation in cultures of various fungi. FEMS Microbiol Lett 276:165–171

    CAS  Google Scholar 

  • Hegnauer H, Nyhlén LE, Rast DM (1985) Ultrastructure of native and synthetic Agaricus bisporus melanins—implications as to the compartmentation of melanogenesis in fungi. Exp Mycol 9:1–29

    Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    CAS  Google Scholar 

  • Ikeda R, Sugita T, Jacobson ES, Shinoda T (2003) Effects of melanin upon susceptibility of Cryptococcus to antifungals. Microbiol Immunol 47:271–277

    CAS  Google Scholar 

  • Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16:523–531

    Google Scholar 

  • Jacobson ES, Ikeda R (2005) Effect of melanization upon porosity of the cryptococcal cell wall. Med Mycol 43:327–333

    CAS  Google Scholar 

  • Jiang N, Sun N, Xiao D, Pan J, Wang Y, Zhu X (2009) A copper-responsive factor gene CUF1 is required for copper induction of laccase in Cryptococcus neoformans. FEMS Microbiol Lett 296:84–90

    CAS  Google Scholar 

  • Jorgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CA, Nielsen KF, Frisvad JC, Ram AF (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553

    CAS  Google Scholar 

  • Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153:4261–4273

    CAS  Google Scholar 

  • Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100:15670–15675

    CAS  Google Scholar 

  • Lamia K, Neji G (2010) Aspergillus niger is able to decolourize sepia ink contained in saline industrial wastewaters. Desalin Water Treat 20:144–153

    CAS  Google Scholar 

  • Land EJ, Ramsden CA, Riley PA (2004) Quinone chemistry and melanogenesis. Methods Enzymol 378:88–109

    CAS  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    CAS  Google Scholar 

  • Latge JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    CAS  Google Scholar 

  • Latge JP, Mouyna I, Tekaia F, Beauvais A, Debeaupuis JP, Nierman W (2005) Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med Mycol 43(Suppl 1):S15–S22

    CAS  Google Scholar 

  • Madrid IM, Xavier MO, Mattei AS, Fernandes CG, Guim TN, Santin R, Schuch LF, Nobre Mde O, Meireles MCA (2010) Role of melanin in the pathogenesis of cutaneous sporotrichosis. Microbes Infect 12:162–165

    CAS  Google Scholar 

  • Martinez LR, Casadevall A (2006) Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50:1021–1033

    CAS  Google Scholar 

  • Mednick AJ, Nosanchuk JD, Casadevall A (2005) Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect Immun 73:2012–2019

    CAS  Google Scholar 

  • Meng S, Kaxiras E (2008) Theoretical models of eumelanin protomolecules and their optical properties. Biophys J 94:2095–2105

    CAS  Google Scholar 

  • Missall TA, Moran JM, Corbett JA, Lodge JK (2005) Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot Cell 4:202–208

    CAS  Google Scholar 

  • Mohorcic M, Friedrich J, Renimel I, André P, Mandin D, Chaumont J-P (2007) Production of melanin bleaching enzyme of fungal origin and its application in cosmetics. Biotechnol Bioprocess Eng 12:200–206

    CAS  Google Scholar 

  • Morris-Jones R, Gomez BL, Diez S, Uran M, Morris-Jones SD, Casadevall A, Nosanchuk JD, Hamilton AJ (2005) Synthesis of melanin pigment by Candida albicans in vitro and during infection. Infect Immun 73:6147–6150

    CAS  Google Scholar 

  • Munro CA, Gow NA (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39(Suppl 1):41–53

    CAS  Google Scholar 

  • Nagasaki K, Kumazawa M, Murakami S, Takenaka S, Koike K, Aoki K (2008) Purification, characterization, and gene cloning of Ceriporiopsis sp. strain MD-1 peroxidases that decolorize human hair melanin. Appl Environ Microbiol 74:5106–5112

    CAS  Google Scholar 

  • Ngamskulrungroj P, Price J, Sorrell T, Perfect JR, Meyer W (2011) Cryptococcus gattii virulence composite: candidate genes revealed by microarray analysis of high and less virulent Vancouver island outbreak strains. PLoS One 6:e16076

    CAS  Google Scholar 

  • Nosanchuk JD, Casadevall A (2003a) Budding of melanized Cryptococcus neoformans in the presence or absence of l-dopa. Microbiology 149:1945–1951

    CAS  Google Scholar 

  • Nosanchuk JD, Casadevall A (2003b) The contribution of melanin to microbial pathogenesis. Cell Microbiol 5:203–223

    CAS  Google Scholar 

  • Nosanchuk JD, Casadevall A (2006) Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 50:3519–3528

    CAS  Google Scholar 

  • Nosanchuk JD, Ovalle R, Casadevall A (2001) Glyphosate inhibits melanization of Cryptococcus neoformans and prolongs survival of mice after systemic infection. J Infect Dis 183:1093–1099

    CAS  Google Scholar 

  • Noverr MC, Williamson PR, Fajardo RS, Huffnagle GB (2004) CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect Immun 72:1693–1699

    CAS  Google Scholar 

  • Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR (2009) Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 71:1165–1176

    CAS  Google Scholar 

  • Paolo WF Jr, Dadachova E, Mandal P, Casadevall A, Szaniszlo PJ, Nosanchuk JD (2006) Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature. BMC Microbiol 6:55

    Google Scholar 

  • Pihet M, Vandeputte P, Tronchin G, Renier G, Saulnier P, Georgeault S, Mallet R, Chabasse D, Symoens F, Bouchara JP (2009) Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 9:177

    Google Scholar 

  • Pukkila-Worley R, Gerrald QD, Kraus PR, Boily MJ, Davis MJ, Giles SS, Cox GM, Heitman J, Alspaugh JA (2005) Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot Cell 4:190–201

    CAS  Google Scholar 

  • Purvis OW, Bailey E, McLean J, Kasama T, Williamson BJ (2004) Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiol J 21:159–167

    CAS  Google Scholar 

  • Raparia K, Powell SZ, Cernoch P, Takei H (2010) Cerebral mycosis: 7-year retrospective series in a tertiary center. Neuropathology 30:218–223

    Google Scholar 

  • Raposo G, Marks MS (2002) The dark side of lysosome-related organelles: specialization of the endocytic pathway for melanosome biogenesis. Traffic 3:237–248

    Google Scholar 

  • Ratto M, Chatani M, Ritschkoff AC, Viikari L (2001) Screening of micro-organisms for decolorization of melanins produced by bluestain fungi. Appl Microbiol Biotechnol 55:210–213

    CAS  Google Scholar 

  • Riley PA (1997) Melanin. Int J Biochem Cell Biol 29:1235–1239

    CAS  Google Scholar 

  • Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7:58–67

    CAS  Google Scholar 

  • Rosa LH, Vieira LMA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  Google Scholar 

  • Rosas AL, MacGill RS, Nosanchuk JD, Kozel TR, Casadevall A (2002) Activation of the alternative complement pathway by fungal melanins. Clin Diagn Lab Immunol 9:144–148

    CAS  Google Scholar 

  • Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R (2006) Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6:14–29

    CAS  Google Scholar 

  • Saitoh Y, Izumitsu K, Morita A, Shimizu K, Tanaka C (2010a) ChMCO1 of Cochliobolus heterostrophus is a new class of metallo-oxidase, playing an important role in DHN-melanization. Mycoscience 51:327–336

    CAS  Google Scholar 

  • Saitoh Y, Izumitsu K, Morita A, Tanaka C (2010b) A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea. Mol Gen Genomics 284:33–43

    CAS  Google Scholar 

  • Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR (1996) Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184:377–386

    CAS  Google Scholar 

  • San-Blas G, Guanipa O, Moreno B, Pekerar S, San-Blas F (1996) Cladosporium carrionii and Hormoconis resinae (C. resinae): cell wall and melanin studies. Curr Microbiol 32:11–16

    CAS  Google Scholar 

  • Schumann J, Hertweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124:690–703

    Google Scholar 

  • Schweitzer AD, Howell RC, Jiang Z, Bryan RA, Gerfen G, Chen CC, Mah D, Cahill S, Casadevall A, Dadachova E (2009) Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PLoS One 4:e7229

    Google Scholar 

  • Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, Cahill S, Frases S, Casadevall A, Dadachova E (2010) Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. Int J Radiat Oncol Biol Phys 78:1494–1502

    CAS  Google Scholar 

  • Silva MB, Thomaz L, Marques AF, Svidzinski AE, Nosanchuk JD, Casadevall A, Travassos LR, Taborda CP (2009) Resistance of melanized yeast cells of Paracoccidioides brasiliensis to antimicrobial oxidants and inhibition of phagocytosis using carbohydrates and monoclonal antibody to CD18. Mem Inst Oswaldo Cruz 104:644–648

    Google Scholar 

  • Tolleson WH (2005) Human melanocyte biology, toxicology, and pathology. J Environ Sci Heal C Environ Carcinog Ecotoxicol Rev 23:105–161

    Google Scholar 

  • Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ (1999) A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 181:6469–6477

    CAS  Google Scholar 

  • Turick CE, Ekechukwu AA, Milliken CE, Casadevall A, Dadachova E (2011) Gamma radiation interacts with melanin to alter its oxidation-reduction potential and results in electric current production. Bioelectrochemistry 82:69–73

    CAS  Google Scholar 

  • Turick CE, Knox AS, Leverette CL, Kritzas YG (2008) In situ uranium stabilization by microbial metabolites. J Environ Radioact 99:890–899

    CAS  Google Scholar 

  • van de Sande WW, de Kat J, Coppens J, Ahmed AO, Fahal A, Verbrugh H, van Belkum A (2007) Melanin biosynthesis in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole. Microbes Infect 9:1114–1123

    Google Scholar 

  • van Duin D, Casadevall A, Nosanchuk JD (2002) Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother 46:3394–3400

    Google Scholar 

  • Vidotto V, Aoki S, Ponton J, Quindos G, Koga-Ito CY, Pugliese A (2004) A new caffeic acid minimal synthetic medium for the rapid identification of Cryptococcus neoformans isolates. Rev Iberoam Micol 21:87–89

    Google Scholar 

  • Volling K, Thywissen A, Brakhage AA, Saluz HP (2011) Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell Microbiol 13:1130–1148

    CAS  Google Scholar 

  • Wakamatsu K, Ito S (2002) Advanced chemical methods in melanin determination. Pigment Cell Res 15:174–183

    CAS  Google Scholar 

  • Walker CA, Gomez BL, Mora-Montes HM, Mackenzie KS, Munro CA, Brown AJ, Gow NA, Kibbler CC, Odds FC (2010) Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot Cell 9:1329–1342

    CAS  Google Scholar 

  • Walton FJ, Idnurm A, Heitman J (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57:1381–1396

    CAS  Google Scholar 

  • Wang Y, Aisen P, Casadevall A (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 63:3131–3136

    CAS  Google Scholar 

  • Wang Z, Zheng L, Hauser M, Becker JM, Szaniszlo PJ (1999) WdChs4p, a homolog of chitin synthase 3 in Saccharomyces cerevisiae, alone cannot support growth of Wangiella (Exophiala) dermatitidis at the temperature of infection. Infect Immun 67:6619–6630

    CAS  Google Scholar 

  • Williamson PR (1997) Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci 2:e99–e107

    CAS  Google Scholar 

  • Woo PC, Tam EW, Chong KT, Cai JJ, Tung ET, Ngan AH, Lau SK, Yuen KY (2010) High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J 277:3750–3758

    CAS  Google Scholar 

  • Woo SH, Suk Cho JS, Seok Lee BS, Kim EK (2004) Decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Biotechnol Bioprocess Eng 9:256–260

    CAS  Google Scholar 

  • Zalar P, Novak M, de Hoog GS, Gunde-Cimerman N (2011) Dishwashers—a man-made ecological niche accomodating human opportunistic fungal pathogens. Fungal Biol 115:997–1007

    CAS  Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VA, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycology Research 104:1421–1426

    Google Scholar 

  • Zhong J, Frases S, Wang H, Casadevall A, Stark RE (2008) Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Biochemistry 47:4701–4710

    CAS  Google Scholar 

  • Zhu X, Gibbons J, Garcia-Rivera J, Casadevall A, Williamson PR (2001) Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect Immun 69:5589–5596

    CAS  Google Scholar 

  • Zhu X, Williamson PR (2003) A CLC-type chloride channel gene is required for laccase activity and virulence in Cryptococcus neoformans. Mol Microbiol 50:1271–1281

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported (in part) by a grant from The City University of New York PSC-CUNY Research Award Program to H. Eisenman. A. Casadevall is supported by the National Institutes of Health grants HL059842, AI033774, AI033142, and AI052733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene C. Eisenman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenman, H.C., Casadevall, A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93, 931–940 (2012). https://doi.org/10.1007/s00253-011-3777-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3777-2

Keywords

Navigation