Skip to main content
Log in

Orthotropic material models for the nonlinear analysis of structural membranes

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we revisit two orthotropic material models proposed in previous works and develop their expressions to obtain their elastic parameters via calibration with experimental data. Our purpose is to make these models available to the nonlinear finite element analysis of structural membranes. We describe the membrane kinematics as a geometrically exact thin shell, whose in-plane orthotropic character is introduced solely at the constitutive equation. Accordingly, small bending, transverse shear and compressive stiffnesses are always present due to the shell assumptions. A least-squares minimization problem is formulated and resolved for the obtaining of the elastic parameters. Stress–strain curves of physical stretch tests are used to this end. The two resulting models were implemented into a nonlinear finite element code and numerical simulations of the stretch tests are conducted to assess the performance of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. These results are offered for free, “as a suggestion in any appropriate experimentation you may care to undertake” [3].

References

  1. Raible T (2003) Concepts for nonlinear orthotropic material modeling with applications to membrane structures. PhD thesis, Leibniz University of Hannover, Germany

  2. Oliveira IP (2006) Nonlinear analysis of membranes: orthotropy and wrinkling (in Portuguese). M.Sc. dissertation, University of São Paulo, Brazil

  3. Shelter Rite (2001) High performance 9032 architectural fabric. Biaxial stretch test, freely available at http://www.architecturalfabrics.com/product-data/9032.php. Accessed April 2012

  4. Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505–518

    Article  MATH  Google Scholar 

  5. Ding H, Yang B (2003) The modeling and numerical analysis of wrinkled membranes. Int J Numer Methods Eng 58:1785–1801

    Article  MATH  Google Scholar 

  6. Bletzinger K-U (2008) A wrinkling model based on material modification for isotropic and orthotropic membranes. Comput Methods Appl Mech Eng 197(6–8):773–788

    MathSciNet  MATH  Google Scholar 

  7. Valdés JG, Miguel J, Oñate E (2009) Nonlinear finite element analysis of orthotropic and prestressed membrane structures. Finite Elem Anal Des 45(6–7):395–405

    Article  Google Scholar 

  8. Pauletti RMO (2010) Some issues on the design and analysis of pneumatic structures. Int J Struct Eng 1:217–240

    Article  Google Scholar 

  9. Deng X, Pellegrino S (2012) Wrinkling of orthotropic viscoelastic membranes. AIAA J 50(3):668–681

    Article  Google Scholar 

  10. Pimenta PM (1993) On a geometrically-exact finite-strain shell model. In: Proceedings of the 3rd Pan-American congress on applied mechanics, São Paulo

  11. Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multiparameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34:181–193

    Article  MATH  Google Scholar 

  12. Raible T, Tegeler K, Löhnert S, Wriggers P (2005) Development of a wrinkling algorithm for orthotropic membrane materials. Comput Methods Appl Mech Eng 194:2550–2568

    Article  MATH  Google Scholar 

  13. Campello EMB (2005) Nonlinear shell formulations in hyperelasticity and finite elastoplasticity: theory and finite element implementation (in Portuguese). D.Sc. thesis, University of São Paulo, Brazil

  14. Oliveira IP, Campello EMB, Pimenta PM (2006) Finite element analysis of the wrinkling of orthotropic membranes. In: Proceedings of the 3rd European conference on computational mechanics, Lisbon

  15. Ciarlet PG (1988) Mathematical elasticity, vol 1. Three-dimensional elasticity, North-Holland

  16. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  17. Lasdon LS, Warren AD (1997) GRG2 User’s guide. Department of Management Science and Information Systems, University of Texas at Austin, USA

Download references

Acknowledgments

Authors acknowledge CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the research Grants 136581/2009-9 and 303793/2012-0. Second author also acknowledges FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the Grant 2012/04009-0, which made possible his research stay at the University of California at Berkeley (Department of Mechanical Engineering) on a momentary leave from the University of São Paulo. In addition, authors would like to express their gratitude to the colleagues Paulo M. Pimenta and Ruy M. O. Pauletti, for the many fruitful discussions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. B. Campello.

Additional information

Technical Editor: Lavinia Maria Sanabio Alves Borges.

Appendices

Appendix 1

For the Saint-Venant orthotropic material, components of the constitutive tangent matrix \( \user2{D}_{\text{ortho}} \), indicated in (46), result as follows (only the non-zero terms are shown):

$$ \begin{gathered} \frac{{\partial n_{{ 1 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{11}^{r} }} = \left( {2\alpha_{1} + 4\mu_{1} + \beta_{1} } \right)E_{11}^{m} + \left( {\alpha_{1} + \alpha_{2} + \beta_{12} } \right)E_{22}^{m} , \hfill \\ \frac{{\partial n_{{ 1 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{12}^{r} }} = \left( {2\alpha_{1} + 4\mu_{1} + \beta_{1} } \right)E_{11}^{m} + \left( {\alpha_{1} + \alpha_{2} + \beta_{12} } \right)E_{22}^{m} , \hfill \\ \frac{{\partial n_{{ 1 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{21}^{r} }} = 2\left( {\mu_{1} + \mu_{2} } \right)E_{12}^{m} ,\quad \frac{{\partial n_{{ 1 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{22}^{r} }} = 2\left( {\mu_{1} + \mu_{2} } \right)E_{12}^{m} , \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{11}^{r} }} = 2\left( {\mu_{1} + \mu_{2} } \right)E_{12}^{m} ,\quad \frac{{\partial n_{{ 2 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{12}^{r} }} = 2\left( {\mu_{1} + \mu_{2} } \right)E_{12}^{m} , \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{21}^{r} }} = \left( {\alpha_{1} + \alpha_{2} + \beta_{12} } \right)E_{11}^{m} + \left( {2\alpha_{2} + 4\mu_{2} + \beta_{2} } \right)E_{22}^{m} \;{\text{and}} \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{22}^{r} }} = \left( {\alpha_{1} + \alpha_{2} + \beta_{12} } \right)E_{11}^{m} + \left( {2\alpha_{2} + 4\mu_{2} + \beta_{2} } \right)E_{22}^{m} , \hfill \\ \end{gathered} $$
(62)

in which \( E_{\alpha \beta }^{m} \) are given by (41).

Appendix 2

For the Oliveira orthotropic material, components of the constitutive tangent matrix \( \user2{D}_{\text{ortho}} \), indicated in (57), result as follows (only the non-zero terms are shown):

$$ \begin{gathered} \frac{{\partial n_{{ 1 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{11}^{r} }} = \left[ {\frac{{\partial \varphi_{1} }}{{\partial \eta_{11}^{r} }} + 2\bar{\mu }\left( {1 + \eta_{11} } \right)} \right]\left( {1 + \eta_{11} } \right) + \left( {\varphi_{1} + 2\bar{\mu }I_{11} } \right) + \bar{\mu }\eta_{21}^{2} , \hfill \\ \frac{{\partial n_{{ 1 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{12}^{r} }} = \left[ {\frac{{\partial \varphi_{1} }}{{\partial \eta_{12}^{r} }} + 2\bar{\mu }\eta_{12} } \right]\left( {1 + \eta_{11} } \right) + \bar{\mu }\eta_{21} \left( {1 + \eta_{22} } \right), \hfill \\ \frac{{\partial n_{{ 1 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{11}^{r} }} = \left[ {\frac{{\partial \varphi_{1} }}{{\partial \eta_{11}^{r} }} + 2\bar{\mu }\left( {1 + \eta_{11} } \right)} \right]\eta_{12} + \bar{\mu }\eta_{21} \left( {1 + \eta_{22} } \right), \hfill \\ \frac{{\partial n_{{ 1 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{12}^{r} }} = \left[ {\frac{{\partial \varphi_{1} }}{{\partial \eta_{12}^{r} }} + 2\bar{\mu }\eta_{12} } \right]\eta_{12} + \left( {\varphi_{1} + 2\bar{\mu }I_{11} } \right) + \bar{\mu }\left( {1 + \eta_{22} } \right)^{2} , \hfill \\ \frac{{\partial n_{{ 1 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{21}^{r} }} = \left[ {\frac{{\partial \varphi_{1} }}{{\partial \eta_{21}^{r} }}} \right]\left( {1 + \eta_{11} } \right) + 2\bar{\mu }\eta_{21} \left( {1 + \eta_{11} } \right) + \bar{\mu }\eta_{12} \left( {1 + \eta_{22} } \right), \hfill \\ \frac{{\partial n_{{ 1 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{22}^{r} }} = \left[ {\frac{{\partial \varphi_{1} }}{{\partial \eta_{22}^{r} }}} \right]\left( {1 + \eta_{22} } \right) + \bar{\mu }\eta_{12} \eta_{21} ,\quad \frac{{\partial n_{{ 1 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{21}^{r} }} = \left[ {\frac{{\partial \varphi_{1} }}{{\partial \eta_{21}^{r} }}} \right]\eta_{12} + \bar{\mu }\left( {1 + \eta_{11} } \right)\left( {1 + \eta_{22} } \right), \hfill \\ \frac{{\partial n_{{ 1 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{22}^{r} }} = \left[ {\frac{{\partial \varphi_{1} }}{{\partial \eta_{22}^{r} }}} \right]\eta_{12} + \bar{\mu }\left( {1 + \eta_{11} } \right)\eta_{21} + 2\bar{\mu }\left( {1 + \eta_{22} } \right)\eta_{12} , \hfill \\ \end{gathered} $$
(63)
$$ \begin{gathered} \frac{{\partial n_{{ 2 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{11}^{r} }} = \left[ {\frac{{\partial \varphi_{2} }}{{\partial \eta_{11}^{r} }}} \right]\eta_{21} + 2\bar{\mu }\eta_{21} \left( {1 + \eta_{11} } \right) + \bar{\mu }\eta_{12} \left( {1 + \eta_{22} } \right), \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{12}^{r} }} = \left[ {\frac{{\partial \varphi_{2} }}{{\partial \eta_{12}^{r} }}} \right]\eta_{21} \left( {1 + \eta_{22} } \right) + \bar{\mu }\left( {1 + \eta_{11} } \right)\left( {1 + \eta_{22} } \right), \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{11}^{r} }} = \left[ {\frac{{\partial \varphi_{2} }}{{\partial \eta_{11}^{r} }}} \right]\left( {1 + \eta_{22} } \right) + \bar{\mu }\eta_{21} \eta_{12} , \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{12}^{r} }} = \left[ {\frac{{\partial \varphi_{2} }}{{\partial \eta_{12}^{r} }}} \right]\left( {1 + \eta_{22} } \right) + \bar{\mu }\left( {1 + \eta_{11} } \right)\eta_{21} + 2\bar{\mu }\left( {1 + \eta_{22} } \right)\eta_{12} , \hfill \\ \end{gathered} $$
(64)
$$ \begin{gathered} \frac{{\partial n_{{ 2 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{21}^{r} }} = \left[ {\frac{{\partial \varphi_{2} }}{{\partial \eta_{21}^{r} }} + 2\bar{\mu }\eta_{21} } \right]\eta_{21} + \left( {\varphi_{2} + 2\bar{\mu }I_{12} } \right) + \bar{\mu }\left( {1 + \eta_{11} } \right)^{2} , \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 1} }}^{r} }}{{\partial \eta_{22}^{r} }} = \left[ {\frac{{\partial \varphi_{2} }}{{\partial \eta_{22}^{r} }} + 2\bar{\mu }\left( {1 + \eta_{22} } \right)} \right]\eta_{21} + \bar{\mu }\left( {1 + \eta_{11} } \right)\eta_{12} , \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{21}^{r} }} = \left[ {\frac{{\partial \varphi_{2} }}{{\partial \eta_{21}^{r} }} + 2\bar{\mu }\eta_{21} } \right]\left( {1 + \eta_{22} } \right) + \bar{\mu }\eta_{12} \left( {1 + \eta_{11} } \right)\;{\text{and}} \hfill \\ \frac{{\partial n_{{ 2 {\text{ortho}}_{ 2} }}^{r} }}{{\partial \eta_{22}^{r} }} = \left[ {\frac{{\partial \varphi_{2} }}{{\partial \eta_{22}^{r} }} + 2\bar{\mu }\left( {1 + \eta_{22} } \right)} \right]\left( {1 + \eta_{22} } \right) + \left( {\varphi_{2} + 2\bar{\mu }I_{12} } \right) + \bar{\mu }\eta_{12}^{2} , \hfill \\ \end{gathered} $$
(65)

in which the derivatives of \( \varphi_{\alpha } \) are given by:

$$ \begin{gathered} \frac{{\partial \varphi_{1} }}{{\partial \eta_{11}^{r} }} = \left( {2a + 12hI_{11}^{2} + 6kI_{11} I_{12} + 2lI_{12} } \right)\left( {1 + \eta_{11} } \right), \hfill \\ \frac{{\partial \varphi_{1} }}{{\partial \eta_{12}^{r} }} = \left( {2a + 12hI_{11}^{2} + 6kI_{11} I_{12} + 2lI_{12} } \right)\eta_{12} , \hfill \\ \frac{{\partial \varphi_{1} }}{{\partial \eta_{21}^{r} }} = \left( {c + 3kI_{11}^{2} + 4lI_{11} I_{12} + 3mI_{12}^{2} } \right)\eta_{21} , \hfill \\ \frac{{\partial \varphi_{1} }}{{\partial \eta_{22}^{r} }} = \left( {c + 3kI_{11}^{2} + 4lI_{11} I_{12} + 3mI_{12}^{2} } \right)\left( {1 + \eta_{22} } \right), \hfill \\ \frac{{\partial \varphi_{2} }}{{\partial \eta_{11}^{r} }} = \left( {c + 3kI_{11}^{2} + 4lI_{11} I_{12} + 3mI_{12}^{2} } \right)\left( {1 + \eta_{11} } \right), \hfill \\ \frac{{\partial \varphi_{2} }}{{\partial \eta_{12}^{r} }} = \left( {c + 3kI_{11}^{2} + 4lI_{11} I_{12} + 3mI_{12}^{2} } \right)\eta_{12} , \hfill \\ \frac{{\partial \varphi_{2} }}{{\partial \eta_{21}^{r} }} = \left( {2b + 2lI_{11}^{2} + 6mI_{11} I_{12} + 12nI_{12}^{2} } \right)\eta_{21} \;{\text{and}} \hfill \\ \frac{{\partial \varphi_{2} }}{{\partial \eta_{21}^{r} }} = \left( {2b + 2lI_{11}^{2} + 6mI_{11} I_{12} + 12nI_{12}^{2} } \right)\left( {1 + \eta_{22} } \right). \hfill \\ \end{gathered} $$
(66)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, F.R., Campello, E.M.B. Orthotropic material models for the nonlinear analysis of structural membranes. J Braz. Soc. Mech. Sci. Eng. 36, 887–899 (2014). https://doi.org/10.1007/s40430-013-0117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0117-8

Keywords

Navigation