Skip to main content

Finite Element Implementation of Structural Constitutive Models

  • Chapter
Structure-Based Mechanics of Tissues and Organs

Abstract

It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues are an emergent behavior of the underlying tissue microstructure. Numerical solutions form the cornerstone in the application of constitutive models in contemporary biomechanics. Herein, a structural constitutive model into a finite element framework specialized for membrane tissues. Multiple deformation modes were simulated, including strip biaxial, planar biaxial with two attachment methods, and membrane inflation. Detailed comparisons with experimental data were undertaken to insure faithful simulations of both the macro-level stress–strain insights into adaptations of the fiber architecture under stress, such as fiber reorientation and fiber recruitment. Results indicated a high degree of fidelity and demonstrated interesting microstructural adaptions to stress and the important role of the underlying tissue matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABAQUS. Abaqus user subroutines reference manual. 2011.

    Google Scholar 

  • Beskos DE, Jenkiins JT. A mechanical model for mammalian tendon. J Appl Mech. 1975;42:755.

    Article  Google Scholar 

  • Billiar KL, Sacks MS. A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J Biomech. 1997;30:753–6.

    Article  PubMed  CAS  Google Scholar 

  • Billiar KL, Sacks MS. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II–A structural constitutive model. J Biomech Eng. 2000a;122:327–35.

    Article  PubMed  CAS  Google Scholar 

  • Billiar KL, Sacks MS. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–Part I: experimental results. J Biomech Eng. 2000b;122:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff JE. Continuous versus discrete (invariant) representations of fibrous structure for modeling non-linear anisotropic soft tissue behavior. Int J Non Linear Mech. 2006;41:167–79.

    Article  Google Scholar 

  • Buchanan RM, Sacks MS. Interlayer micromechanics of the aortic heart valve leaflet. Biomech Model Mechanobiol. 2013;3(4):1–4.

    Google Scholar 

  • Chen H, Liu Y, Slipchenko MN, Zhao X, Cheng JX, Kassab GS. The layered structure of coronary adventitia under mechanical load. Biophys J. 2011;101:2555–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cortes DH, Lake SP, Kadlowec JA, Soslowsky LJ, Elliott DM. Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech Model Mechanobiol. 2010;9:651–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials. 2006;27:3631–8.

    PubMed  CAS  Google Scholar 

  • Criscione JC, Sacks MS, Hunter WC. Experimentally tractable, pseudo-elastic constitutive law for biomembranes: I. Theory. J Biomech Eng. 2003;125:94–9.

    Article  PubMed  Google Scholar 

  • Driessen NJ, Mol A, Bouten CV, Baaijens FP. Modeling the mechanics of tissue-engineered human heart valve leaflets. J Biomech. 2007;40:325–34.

    Article  PubMed  Google Scholar 

  • Fata B, Zhang W, Amini R, Sacks MS. Insights into regional adaptations in the growing pulmonary artery using a meso-scale structural model: effects of ascending aorta impingement. J Biomech Eng. 2014;136:021009.

    Article  PubMed  Google Scholar 

  • Fung YC. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer; 1993.

    Book  Google Scholar 

  • Hansen L, Wan W, Gleason RL. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch. J Biomech Eng. 2009;131:101015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hariton I, de Botton G, Gasser TC, Holzapfel GA. Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol. 2007;6:163–75.

    Article  PubMed  CAS  Google Scholar 

  • Hollander Y, Durban D, Lu X, Kassab GS, Lanir Y. Experimentally validated microstructural 3D constitutive model of coronary arterial media. J Biomech Eng. 2011;133:031007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holzapfel GA, Eberlein R, Wriggers P, Weizascker HW. Large strain analysis of soft biological membranes: formulatin and finite element analysis. Comput Methods Appl Mech Eng. 1996;132:45–61.

    Article  Google Scholar 

  • Holzapfel GA, Ogden RW. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Transact A Math Phys Eng Sci. 2009;367:3445–75.

    Article  Google Scholar 

  • Horowitz A, Lanir Y, Yin FC, Perl M, Sheinman I, Strumpf RK. Structural three-dimensional constitutive law for the passive myocardium. J Biomech Eng. 1988;110:200–7.

    Article  PubMed  CAS  Google Scholar 

  • Hughes TJR. The finite element method: linear static and dynamic finite element analysis. New York: Dover; 2000.

    Google Scholar 

  • Jor JW, Nash MP, Nielsen PM, Hunter PJ. Estimating material parameters of a structurally based constitutive relation for skin mechanics. Biomech Model Mechanobiol. 2011;10:767–78.

    Article  PubMed  Google Scholar 

  • Joyce EM, Moore JJ, Sacks MS. Biomechanics of the fetal membrane prior to mechanical failure: review and implications. Eur J Obstet Gynecol Reprod Biol. 2009;144 Suppl 1:S121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao PH, Lammers S, Tian L, Hunter K, Stenmark KR, Shandas R, Qi HJ. A microstructurally-driven model for pulmonary artery tissue. J Biomech Eng. 2011;133:051002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenedi RM, Gibson T, Daly CH. Biomechanics and related bio-engineering topics. In: Kenedi RM, editor. Bioengineering studies of human skin. Oxford: Pergamon; 1965. p. 147–58.

    Google Scholar 

  • Lake SP, Barocas VH. Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose co-gel model. Ann Biomed Eng. 2011;39:1891–903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech. 1979;12:423–36.

    Article  PubMed  CAS  Google Scholar 

  • Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983;16:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Marsden JE, Hughes TJR. Mathematical foundations of elasticity. Don Mills: Dover; 1983.

    Google Scholar 

  • Mirnajafi A, Raymer J, Scott MJ, Sacks MS. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials. 2005;26:795–804.

    Article  PubMed  CAS  Google Scholar 

  • Mitton R. Mechanical properties of leather fibers. J Soc Leather Trades’ Chem. 1945;29:169–94.

    CAS  Google Scholar 

  • Prot V, Skallerud B, Holzapfel G. Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Methods Eng. 2007;71:987–1008.

    Article  Google Scholar 

  • Sacks M. Biaxial mechanical evaluation of planar biological materials. J Elast. 2000;61:199–246.

    Article  Google Scholar 

  • Sacks MS. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng. 2003;125:280–7.

    Article  PubMed  Google Scholar 

  • Soong TT, Huang WN. A stochastic model for biological tissue elasticity in simple elongation. JBiomech. 1973;6:451–8.

    Google Scholar 

  • Sun W, Sacks MS. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech Model Mechanobiol. 2005;4(2-3):190–9.

    Article  PubMed  Google Scholar 

  • Sun W, Sacks MS, Sellaro TL, Slaughter WS, Scott MJ. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng. 2003;125:372–80.

    Article  PubMed  Google Scholar 

  • Tong P, Fung YC. The stress-strain relationship for the skin. J Biomech. 1976;9:649–57.

    Article  PubMed  CAS  Google Scholar 

  • Tonge TK, Voo LM, Nguyen TD. Full-field bulge test for planar anisotropic tissues: part II–a thin shell method for determining material parameters and comparison of two distributed fiber modeling approaches. Acta Biomater. 2013;9:5926–42.

    Article  PubMed  CAS  Google Scholar 

  • Waldman SD, Michael Lee J. Boundary conditions during biaxial testing of planar connective tissues. Part 1: dynamic behavior. J Mater Sci Mater Med. 2002;13:933–8.

    Article  PubMed  CAS  Google Scholar 

  • Waldman SD, Sacks MS, Lee JM. Boundary conditions during biaxial testing of planar connective tissues: Part II: Fiber orientation. J Mater Sci Lett. 2002;21:1215–21.

    Article  CAS  Google Scholar 

  • Wognum S, Schmidt DE, Sacks MS. On the mechanical role of de novo synthesized elastin in the urinary bladder wall. J Biomech Eng. 2009;131:101018.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this work was supported by FDA contract HHSF223201111595P and NIH/NHLBI Grant NHLBI R01 HL108330 and R01 HL119297-01.

Conflict of Interests

The authors have no conflict of interests to report in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sacks, M.S. (2016). Finite Element Implementation of Structural Constitutive Models. In: Kassab, G., Sacks, M. (eds) Structure-Based Mechanics of Tissues and Organs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7630-7_17

Download citation

Publish with us

Policies and ethics