Skip to main content
Log in

An iterative domain decomposition method for free boundary problems with nonlinear flux jump constraint

  • Original Article
  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we design an iterative domain decomposition method for free boundary problems with nonlinear flux jump condition. The proposed scheme requires, in each iteration, the approximation of the flux on (both sides of) the free interface. We present a finite element implementation of our method. The numerical implementation uses harmonically deformed triangulations to inexpensively generate finite element meshes in subdomains. We apply our method to a simplified model for jet flows in pipes and to a magnetohydrodynamics model. Finally, we present numerical examples illustrating the robustness and convergence of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alt HW, Caffarelli LA, Friedman A (1984) Jets with two fluids. i. one free boundary. Indiana Univ Math J 33(2):213–247

  • Alt HW, Caffarelli LA, Friedman A (1984) Variational problems with two phases and their free boundaries. Trans Am Math Soc 282(2):431–461

  • Alt HW, Caffarelli LA, Friedman A (1985) Abrupt and smooth separation of free boundaries in flow problems. Ann Scuola Norm Sup Pisa Cl Sci (4) 12(1):137–172

  • Barrett JW, Elliott CM (1985) Fixed mesh finite element approximations to a free boundary problem for an elliptic equation with an oblique derivative boundary condition. Comput Math Appl 11(4):335–345

    Article  MATH  MathSciNet  Google Scholar 

  • Bouchon F, Clain S, Touzani R (2005) Numerical solution of the free boundary Bernoulli problem using a level set formulation. Comput Methods Appl Mech Eng 194(36–38):3934–3948

    Article  MATH  MathSciNet  Google Scholar 

  • Chen S, Merriman B, Osher S, Smereka P (1997) A simple level set method for solving Stefan problems. J Comput Phys 135(1):8–29

    Article  MATH  MathSciNet  Google Scholar 

  • Chen Z, Shih T, Yue X (2000) Numerical methods for Stefan problems with prescribed convection and nonlinear flux. IMA J Numer Anal 20(1):81–98

    Article  MATH  MathSciNet  Google Scholar 

  • Eppler K, Harbrecht H (2006) Efficient treatment of stationary free boundary problems. Appl Numer Math 56(10–11):1326–1339

    Article  MATH  MathSciNet  Google Scholar 

  • Flucher M, Rumpf M (1997) Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J Reine Angew Math 486:165–204

    MATH  MathSciNet  Google Scholar 

  • Friedman A (1968) The Stefan problem in several space variables. Trans Am Math Soc 133:51–87

    Article  MATH  Google Scholar 

  • Friedman A, Liu Y (1995) A free boundary problem arising in magnetohydrodynamic system. Ann Scuola Norm Sup Pisa Cl Sci (4) 22(3):375–448

  • Kamenomostskaja SL (1961) On Stefan’s problem. Mat Sb (NS), 53 (95):489–514

  • Kang KK, Lee JY, Seo JK (1997) Identification of a free boundary arising in a magnetohydrodynamics system. Inverse Prob 13(5):1301–1309

  • Kärkkäinen KT, Tiihonen T (1999) Free surfaces: shape sensitivity analysis and numerical methods. Int J Numer Methods Eng 44(8):1079–1098

    Article  MATH  Google Scholar 

  • Kuster CM, Gremaud PA, Touzani R (2007) Fast numerical methods for Bernoulli free boundary problems. SIAM J Sci Comput 29(2):622–634

    Article  MATH  MathSciNet  Google Scholar 

  • Nochetto RH, Paolini M, Verdi C (1991a) An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates. Math Comp 57(195):73–108, S1–S11

  • Nochetto RH, Paolini M, Verdi C (1991b) An adaptive finite element method for two-phase Stefan problems in two space dimensions. II. Implementation and numerical experiments. SIAM J Sci Stat Comput 12(5):1207–1244

    Article  MATH  MathSciNet  Google Scholar 

  • Rubenstein LI (1971) The Stefan problem. American Mathematical Society, Providence. Translated from the Russian by A. D. Solomon. Translations of mathematical monographs, vol 27

  • Saavedra P, Scott LR (1991) Variational formulation of a model free-boundary problem. Math Comp 57(196):451–475

  • Teixeira EV, Leito R, de Queiroz OS (2012) Regularity for degenerate two-phase free boundary problems. eprint. arXiv:1202.5264

  • Visintin A (2008) Introduction to Stefan-type problems. In: Handbook of differential equations: evolutionary equations, vol IV. Elsevier/North-Holland, Amsterdam, p 377–484

  • van der Zee KG, van Brummelen EH, de Borst R (2010) Goal-oriented error estimation and adaptivity for free-boundary problems: the domain-map linearization approach. SIAM J Sci Comput 32(2):1064–1092

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang Z, Babuška I (1996) A numerical method for steady state free boundary problems. SIAM J Numer Anal 33(6):2184–2214

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. Eduardo Teixeira for bringing this problem to our attention. H.M.V. was partially supported by FAPERJ Grants E-26/102.965/2011 and E-26/111.416 /2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Versieux.

Additional information

Communicated by Cristina Turner.

Appendix: An approximation of the flux

Appendix: An approximation of the flux

Given a free interface approximation \(\Gamma ^h\), we consider the approximation of the flux of \(u^h\) [the solution of problem (11)] on \({\Omega ^+_{h}}\).

Denote by \(A=[a_{ij}]\) the Neumann finite element matrix defined by

$$\begin{aligned} a_{ij}=\int _{\Omega ^+_h}a_1\nabla \phi _{i}\nabla \phi _{j}\;\mathrm{d}x \end{aligned}$$

where \(\{\phi _i\}\) are the usual hat basis function of the space \({\mathcal P}^1(\mathcal {T}^h_n, \Omega ^+_{h})\).

We classify the nodes in interior nodes I, boundary nodes \(\Sigma ^+\) and interface nodes \(\Gamma \). This classification gives the following block structure of the matrix \(A\):

$$\begin{aligned} A= \left( \begin{array}{l@{\quad }l@{\quad }l} A_{II} &{} A_{I\Sigma ^+} &{} A_{I\Gamma }\\ A_{I\Sigma ^+}^\mathrm{T} &{} A_{\Sigma ^+\Sigma ^+} &{} A_{\Sigma ^+\Gamma }\\ A_{I\Gamma }^\mathrm{T} &{} A_{\Sigma ^+\Gamma }^\mathrm{T} &{} A_{\Gamma \Gamma }\\ \end{array} \right) . \end{aligned}$$

The solution of (11) is given by:

$$\begin{aligned} u^h= \left( \begin{array}{l} u_{I}^h\\ u_{\Sigma ^+}^h\\ u_{\Gamma }^h\\ \end{array} \right) = \left( \begin{array}{l} A_{II}^{-1}(A_{I\Sigma ^+}g^h)\\ g^h\\ 0\\ \end{array} \right) . \end{aligned}$$

We define \(\mu \) by

$$\begin{aligned} \mu =A_{I\Gamma }^\mathrm{T} u_{I}=A_{I\Gamma }^\mathrm{T}A_{II}^{-1}A_{I\Sigma ^+}g^h. \end{aligned}$$

Let \(N_\Gamma \) be the number of vertices of \({\mathcal T}^h\) on \(\Gamma ^h\). We note that using basic finite element analysis \(\mu =(\mu _{i}) \in \mathbb {R}^{N_\Gamma }\) with

$$\begin{aligned} \mu _{i} = \int _{\Omega ^+_{h}} (a_1 \nabla u^h ) \cdot \nabla \phi _{\ell _i} \;\mathrm{d}x = \int _{\Gamma ^h} (a_1 \nabla u^h )\cdot \eta _{\Gamma ^h} \phi _{\ell _i} \;\mathrm{d}s. \end{aligned}$$

Here, given \(i\in \{1,\ldots ,N_\Gamma \}\), \(\ell _i\) represents the index of the a node of \(\mathcal {T}^h\) belonging to \(\Gamma ^h\).

We use \(\mu \) to obtain a piecewise linear approximation of the flux \( \nabla u^h \cdot \eta _{\Gamma ^h}\). Since \(u^h=0\) on \(\Gamma ^h\), for each edge of \(e_k\) of \(\Gamma ^h\) we have

$$\begin{aligned} \nabla u^h|_{e_k}= \partial _{\eta _k} u \eta _k \end{aligned}$$

where \(\eta _k\) represents the normal vector to edge \(e_k\) pointing in the outward direction of \(\Omega ^+_{h}\). Hence,

$$\begin{aligned} \mu _{i} = \int _{\Gamma ^h} (\eta _{\Gamma ^h}^\mathrm{T} a_1 \eta _{\Gamma ^h}) \partial _{\eta _{\Gamma ^h}} u \phi _{\ell _i} \;\mathrm{d}s. \end{aligned}$$
(33)

We define \(\lambda ^h_1\) the piecewise linear approximation of \(\partial _{\eta _{\Gamma ^h}} u\) as follows. First, we observe that \(\lambda ^h_1 \in \mathrm{span} \{ \phi _{\ell _i}|_{\Gamma ^h}\}_{1 \le i \le N_\Gamma }\). Next, we introduce the matrix \(Q=[q_{ij}] \in \mathbb {R}^{N_\Gamma \times N_\Gamma }\) with

$$\begin{aligned} q_{i j}=\int _{\Gamma ^h} (\eta _{\Gamma ^h}^\mathrm{T} a_1 \eta _{\Gamma ^h}) \phi _{\ell _i}\phi _{\ell _j} \;\mathrm{d}s. \end{aligned}$$

Finally, based on relation (33) we define

$$\begin{aligned} \lambda ^h_1= \sum _{i}^{N_\Gamma } \alpha _i \phi _{\ell _i}|_{\Gamma ^h} \end{aligned}$$
(34)

where \(\alpha =(\alpha _i)\) is the solution of

$$\begin{aligned} Q \alpha =\mu . \end{aligned}$$

In a similar way, we define \(\lambda _2^h\), the approximation of of the flux on \(\Gamma ^h\), of the solution of (12).

Remark 2

A more regular approximation of the flux can be done in practice. For instance, we could obtain \(\alpha \) as the solution of the following problem:

$$\begin{aligned} (Q +\epsilon D) \alpha =\mu . \end{aligned}$$

where \(D\) is diffusion of operator on \(\Gamma ^h\) and \(\epsilon \) is a regularization parameter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvis, J., Versieux, H.M. An iterative domain decomposition method for free boundary problems with nonlinear flux jump constraint. Comp. Appl. Math. 34, 1199–1217 (2015). https://doi.org/10.1007/s40314-014-0173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0173-4

Keywords

Mathematics Subject Classification

Navigation