Skip to main content
Log in

The Flow of Gauge Transformations on Riemannian Surface with Boundary

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

We consider the gauge transformations of a metric G-bundle over a compact Riemannian surface with boundary. By employing the heat flow method, the local existence and the long time existence of generalized solution are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chang, K.-C.: Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(5), 363–395 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Monographs. The Clarendon Press, New York (1990)

    MATH  Google Scholar 

  3. Eells Jr., J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Freed, D.S., Uhlenbeck, K.K.: Instantons and Four-Manifolds, Second, Mathematical Sciences Research Institute Publications, vol. 1. Springer-Verlag, New York (1991)

    Google Scholar 

  5. Fröhlich, S., Müller, F.: On the existence of normal Coulomb frames for two-dimensional immersions with higher codimension. Analysis (Munich) 31(3), 221–236 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Hamilton, R.S.: Harmonic Maps of Manifolds with Boundary. Lecture Notes in Mathematics, vol. 471. Springer-Verlag, Berlin (1975)

    Book  Google Scholar 

  7. Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames. Second, Cambridge Tracts in Mathematics, vol. 150. Cambridge University Press, Cambridge (2002). Translated from the 1996 French original, With a foreword by James Eells

  8. Jost, J.: Riemannian Geometry and Geometric Analysis. Sixth Universitext. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  9. LadyŽenskaja, O.A., Solonnikov, V.A., Ural0ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

  10. Lawson Jr., H.B.: The Theory of Gauge Fields in Four Dimensions. CBMS Regional Conference Series in Mathematics, vol. 58. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1985)

  11. Li, Y., Wang, Y.: Bubbling location for F-harmonic maps and inhomogeneous Landau–Lifshitz equations. Comment. Math. Helv. 81(2), 433–448 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co., Inc, River Edge (1996)

    Book  MATH  Google Scholar 

  13. Ma, L.: Harmonic map heat flow with free boundary. Comment. Math. Helv. 66(2), 279–301 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Meyer, Y., Rivière, T.: A partial regularity result for a class of stationary Yang–Mills fields in high dimension. Rev. Mat. Iberoam. 19(1), 195–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Michor, P.W.: Topics in Differential Geometry. Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence (2008). http://goo.gl/sbCBtN. Accessed 15 May 2017

  16. Müller, F., Schikorra, A.: Boundary regularity via Uhlenbeck–Rivi‘ere decomposition. Analysis (Munich) 29(2), 199–220 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3) 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  18. Qing, J.: On singularities of the heat flow for harmonic maps from surfaces into spheres. Commun. Anal. Geom. 3(1–2), 297–315 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qing, J.: A remark on the finite time singularity of the heat flow for harmonic maps. Calc. Var. Partial Differ. Equ. 17(4), 393–403 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rivière, T., Struwe, M.: Partial regularity for harmonic maps and related problems. Commun. Pure Appl. Math. 61(4), 451–463 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113(1), 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schikorra, A.: A remark on gauge transformations and the moving frame method. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 503–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schoen, R.M.: Analytic aspects of the harmonic map problem. In: Chern, S.S. (ed.) Seminar on Nonlinear Partial Differential Equations, vol. 2, pp. 321–358. Springer, New York (1984). doi:10.1007/978-1-4612-1110-5_17

    Chapter  Google Scholar 

  26. Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(4), 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tao, T., Tian, G.: A singularity removal theorem for Yang–Mills fields in higher dimensions. J. Am. Math. Soc. 17(3), 557–593 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Topping, P.: Winding behaviour of finite-time singularities of the harmonic map heat flow. Math. Z. 247(2), 279–302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Uhlenbeck, K.K.: Connections with Lpbounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982)

    Article  MATH  Google Scholar 

  30. Wang, C.: Biharmonic maps from R4 into a Riemannian manifold. Math. Z. 247(1), 65–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, C.: Stationary biharmonic maps from Rm into a Riemannian manifold. Commun. Pure Appl. Math. 57(4), 419–444 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjun Ai.

Appendix A Proof of Corollary D

Appendix A Proof of Corollary D

In [20], the existence of Coulomb gauge with respect to a “small” connection on a disk plays an important role in the existence of conservation law. It is quite natural to expect “good estimate” under “good gauge,” and then the existence of conservation law can be obtained from a fixed point argument of systems of elliptic partial differential equations.

One can also obtain the above existence of Coulomb gauge by heat flow method. In fact, as a result of the existence of generalized solution of (1.3) when applied to a special case, we will present a flow version proof of the existence (cf. ([23], Theorem 2.1; [5], Proposition 2)).

In what follows, we will take \(\Sigma \) to be a small disk (dimension two), not necessarily with Euclidean metric. A connection of vector bundle E over \(\Sigma \), where E is with rank m and structure group \(\mathrm {SO}(m)\), can be written as \(d+\Omega \), where \(\Omega \in \mathfrak {so}(m)\otimes T^*\Sigma \) is a 1-form with value in \(\mathfrak {so}(m)\), then for any gauge transformation S,

Thus, if one sets \(A_0=d\) as a trivial connection and \(A=d+\Omega \), the existence of generalized solution of (1.3) implies that there exists some \(S\in C^\infty (\Sigma ,\mathrm {SO}(m))\), such that

$$\begin{aligned} 0=\nabla ^*_{d+\tilde{\Omega }}\tilde{\Omega }=\nabla _d^*\tilde{\Omega }+\left\{ \tilde{\Omega },\tilde{\Omega }\right\} =d^*\tilde{\Omega }. \end{aligned}$$

By Poincaré Lemma, there exists some \(\xi \in C^\infty (\Sigma , \mathfrak {so}(m))\), such that

$$\begin{aligned} {\left\{ \begin{array}{ll} \nabla ^\perp \xi =S^{-1}dS+S^{-1}\Omega S, &{}\quad x\in \Sigma \\ \xi =0, &{}\quad x\in \partial \Sigma . \end{array}\right. } \end{aligned}$$
(A.1)

The boundary condition holds since the flow implies that on \(\partial \Sigma \),

which shows that \(\xi \) is a constant along \(\partial \Sigma \), and one can make \(\xi \) vanish on boundary since it is determined up to a constant.

To show the estimates hold in Corollary D, we need to construct \(S_0\) properly. Parameterize as \(x=(y,r)\), where r is the distance to \(\partial \Sigma \) and y is the parameter of \(\partial \Sigma \). Firstly, let us assume that \(\Omega \in C^\infty (\Sigma ,\mathfrak {so}(m)\otimes T^*\Sigma )\) and set the initial value as

$$\begin{aligned} S_0(x)=\exp \left\{ (1-\eta )r\Omega _\nu (x)\right\} . \end{aligned}$$

where \(\Omega _\nu (x)=-\Omega (r,y)(\frac{\partial }{\partial {r}})\), and \(\eta \in C_0^\infty (\Sigma )\), with \(\eta =0\) on \(\Sigma _\delta \) and \(\eta =1\) on \(\Sigma {\setminus }\Sigma _{2\delta }\); moreover, one can require \(|\nabla \eta |\le 2/\delta \). To see the compatibility at the corner, note that, on the corner \(\partial \Sigma \times \left\{ 0\right\} \), \(S=S_0=\mathrm{Id}\), where \(\mathrm{Id}\) is the constant section over \(\partial \Sigma \), which maps each point to the identity of G,

The energy of \(S_0\) can be controlled as

$$\begin{aligned} 2\mathcal {E}(S_0) =\int _\Sigma |S_0^{-1}\mathrm{d}S_0+S_0^{-1}\Omega S_0|^2 \le \int _\Sigma (|\mathrm{d}S_0|^2+|\Omega |^2) =\Vert \mathrm{d}S_0\Vert _2^2+\Vert \Omega \Vert _2^2. \end{aligned}$$

We claim that \(\mathcal {E}(S_0)\) can be taken as small as wanted. In fact, note that for \(x\in \Sigma _{2\delta }\), the derivative of \(\exp \) is uniformly bounded with respect to \(\delta \), thus

$$\begin{aligned} |dS_0|\le C\left( (1-\eta )|\Omega _\nu |+r\left( |\nabla \eta ||\Omega _\nu |+|d\Omega _\nu |\right) \right) , \end{aligned}$$

and

$$\begin{aligned} |dS_0|^2\le C|\Omega |_{1,2}^2\left( 1+r^2|\nabla \eta |^2+r^2\right) . \end{aligned}$$

Finally,

$$\begin{aligned} \int _\Sigma |dS_0|^2&=\int _{\Sigma _{2\delta }{\setminus }\Sigma _{\delta }}|dS_0|^2 \le C\int _{\Sigma _{2\delta }{\setminus }\Sigma _{\delta }} |\Omega |_{1,2}^2(1+\delta ^2\cdot 1/\delta ^2+\delta ^2), \end{aligned}$$

which tends to 0 as \(\delta \rightarrow 0\) by the absolute continuity of integration.

Thus, for any \(\varepsilon >0\), one can construct \(S_0\), such that \(\Vert dS_0\Vert _2\le \varepsilon \). Since the energy is monotonically decreasing along the flow,

$$\begin{aligned} \Vert \tilde{\Omega }\Vert _2^2=2\mathcal {E}(S)\le 2\mathcal {E}(S_0) \le \Vert \Omega \Vert _2^2+\varepsilon ^2. \end{aligned}$$

Moreover, since \(\nabla ^\perp \xi =S^{-1}dS+S^{-1}\Omega S\),

$$\begin{aligned} \Vert dS\Vert _2\le \Vert \Omega \Vert _2+\Vert \nabla ^\perp \xi \Vert _2 =\Vert \Omega \Vert _2+\Vert \tilde{\Omega }\Vert _2 \le 2\Vert \Omega \Vert _2+\varepsilon . \end{aligned}$$

By Poincaré inequality, one concludes that

$$\begin{aligned} \Vert dS\Vert _2+\Vert \xi \Vert _{1,2}\le C(m)\Vert \Omega \Vert _2. \end{aligned}$$

To show the required estimate for \(\Omega \in L^2(\Sigma ,\mathfrak {so}(m)\otimes T^*\Sigma )\), let us approximate it by \(\Omega _k\in C^\infty (\Sigma ,\mathfrak {so}(m)\otimes T^*\Sigma )\) in \(L^2\) with \(\Vert \Omega _k\Vert _2\le \Vert \Omega \Vert _2\). For \(A_0=\mathrm{d}\), , , run the gauge transformation heat flow,

One obtains \(S_k\in W^{1,2}(D,\mathrm {SO}(m))\cap C^\infty \), \(\xi _k\in W^{1,2}(D,\mathrm {SO}(m))\cap C^\infty \), which solves (A.1), with

$$\begin{aligned} \Vert dS_k\Vert _2+\Vert \xi _k\Vert _{1,2}\le C(m)\Vert \Omega _k\Vert _2. \end{aligned}$$

Therefore, \(S_k\), \(\xi _k\) are \(W^{1,2}\) bounded, the weak compactness implies that \(S_k\), \(\xi _k\) converge weakly to some \(S_\infty \), \(\xi _\infty \) in \(W^{1,2}\), respectively. Take limits in (A.1), one finds the required gauge. The weakly lower semi-continuity implies the required estimate, and we finish the proof of Corollary D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, W. The Flow of Gauge Transformations on Riemannian Surface with Boundary. Commun. Math. Stat. 5, 277–316 (2017). https://doi.org/10.1007/s40304-017-0112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-017-0112-y

Keywords

Mathematics Subject Classification

Navigation