Skip to main content
Log in

The Photo-Gravitational R3BP when the Primaries are Heterogeneous Spheroid with Three Layers

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The present paper deals with the stationary solution of the planar restricted three body problem when both the primaries are heterogeneous oblate spheroid with three layers of different densities and sources of radiation as well. It derives equations of motion and examines the existence and the linear stability of libration points. It is seen that there are five libration points, two triangular points and three collinear ones. It is further observed that the collinear points are unstable, while the triangular points are stable for the mass parameter 0 ≤ μ < μ c r i t . Here μ c r i t (the critical mass parameter) depends upon the combined effects of radiation and that due to the three different layers in the primaries. It is further seen that long or short periodic elliptical orbits emanate from the triangular points in the aforementioned range of μ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abouelmagd, E.I.: Existence and stability of triangular points in the restricted three-body problem with numerical application. Astrophys. Space Sci. 342, 45–53 (2012)

    Article  Google Scholar 

  2. Abouelmagd, E.I.: The effect of photogravitational force and oblateness in the perturbed restricted three-body problem. Astrophys. Space Sci. 346, 51–69 (2013)

    Article  MATH  Google Scholar 

  3. Chernikov, Yu. A.: The photogravitational restricted three body problem. Soviat Astron. A. J. 14, 1 (1970)

    MathSciNet  Google Scholar 

  4. Bhatnagar, K.B., Chawla, J.M: A study of Lagrangian points in the photogravitational restricted three body problem. Indian J. Appl. Math. 10 (11), 1443–1451 (1979)

    Google Scholar 

  5. Das, M.K., Narang, P., Mahajan, S., Yuasa, M.: Effect of radiation on the stability of equilibrium points in the binary stellar systems: RW-Monocerotis, Krger 60. Astrophys. Space Sci. 314, 261 (2008)

    Article  Google Scholar 

  6. Idrisi, M.J., Taqvi, Z.A.: Restricted three-body problem when one of the primaries is an ellipsoid. Astrophys. Space Sci. 348, 41 (2013)

    Article  Google Scholar 

  7. Khanna, U., Bhatnagar, K.B.: Existence and stability of libration points in the restricted three- body problem when the smaller primary is a triaxial rigid body and the bigger one an oblate spheroid. Indian J. Pure. Appl. Math. 30 (7), 721–733 (1999)

    MATH  Google Scholar 

  8. Kushvah, B.S.: The effect of radiation pressure on the equilibrium points in the generalised photogravitational restricted three body problem. Astrophys. Space Sci. 318, 41 (2008)

    Article  MATH  Google Scholar 

  9. McCuskey, C.W.: Introduction to Celestial mechanics. Addison-Wesley publication Company, INC (1963)

    MATH  Google Scholar 

  10. Murray, C.D.: Dynamical effects of drag in the circular restricted three-body problem. I. Location and Stability of the Lagrangian Equilibrium Points. Icarus. 112(2), 465 (1994)

    Google Scholar 

  11. Poynting, J.H.: Radiation in the solar system: its effect on temperature and its pressure on small bodies. Philos. Trans. R. Soc. Lond. 202, 525 (1903)

    Article  Google Scholar 

  12. Radzievskii, V.V.: The restricted problem of three bodies taking account of light pressure. Akad. Nauk USSR, Astron. J. 27, 250 (1950)

    MathSciNet  Google Scholar 

  13. Radzievskii, V.V.: The photo-gravitational restricted three-body problem. Astron. ž. 30(3), 265 (1953)

    MathSciNet  Google Scholar 

  14. Ragos, O., Zagouras, C.: Periodic solutions about the out of plane equilibrium points in the photo-gravitational restricted three-body problem. Celest. Mech. 44(1–2), 135–154 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ragos, O., Zafiropoulos, F.A.: A numerical study of the influence of the Poynting-Robertson effect on the equilibrium points of the photogravitational restricted three-body problem: I. Coplanar case. Astron. Astrophys. 300, 568–578 (1995)

    Google Scholar 

  16. Ragos, O., Zafiropoulos, F.A., Vrahatis, M.N.: A numerical study of the influence of the Poynting-Robertson effect on the equilibrium points of the photo-gravitational restricted three-body problem: II. Out of plane case. Astron. Astrophys. 300, 579–590 (1995)

    Google Scholar 

  17. Schuerman, D.W.: The restricted three body problem including radiation pressure. Astrophys. J. 238, 337 (1980)

    Article  MathSciNet  Google Scholar 

  18. Sharma, R.K., Subba Rao, P.V.: Collinear equilibria and their characteristic exponents in the restricted three-body problem when the primaries are oblate spheroids. Celest. Mech. 12(2), 189–201 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sharma, R.K., Subba Rao, P.V.: A case of commensurability induced by oblateness. Celest. Mech. 18, 185–194 (1978)

    Article  MATH  Google Scholar 

  20. Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35, 145–187 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Singh, J., Taura, J.J.: Motion in the generalized restricted three-body problem. Astrophys. Space Sci. 343, 95–106 (2013)

    Article  MATH  Google Scholar 

  22. Szebehely, V.: Theory of orbits. Academic Press, San Diego (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Sanam Suraj.

Appendix

Appendix

List of co-efficient of equations of Section “Location of Collinear Points” :

$$\begin{array}{@{}rcl@{}} \upsilon^{(1)}_{0}&=&3k_{2}q_{2}\\ \upsilon^{(1)}_{1}&=&12k_{2}q_{2}\\ \upsilon^{(1)}_{2}&=&2q_{2}\mu+18k_{2}q_{2}\\ \upsilon^{(1)}_{3}&=&8q_{2}\mu+12k_{2}q_{2}\\ \upsilon^{(1)}_{4}&=&-2+2\mu-3k_{3}+3\mu k_{3}+2q_{1}-2\mu q_{1}+3k_{1}q_{1}+12\mu q_{2}+3k_{2}q_{2}\\ \upsilon^{(1)}_{5}&=&-10+8\mu-15k_{3}+12\mu k_{3}+4q_{1}-4\mu q_{1}+8\mu q_{2}\\ \upsilon^{(1)}_{6}&=&2\left(-10+6\mu_{1}5k_{3}+9\mu k_{3}+q_{1}-\mu q_{1}+\mu q_{2}\right.\\ \upsilon^{(2)}_{7}&=&-20+8\mu-30k_{3}+12\mu k_{3}\\ \upsilon^{(2)}_{8}&=&-10+2\mu-15k_{3}+3\mu k_{3}\\ \upsilon^{(2)}_{9}&=&-2-3k_{3} \end{array} $$
$$\begin{array}{@{}rcl@{}} \upsilon^{(2)}_{0}&=&-3k_{2}q_{2}\\ \upsilon^{(2)}_{1}&=&12k_{2}q_{2}\\ \upsilon^{(2)}_{2}&=&-2\mu q_{2}-18k_{2}q_{2}\\ \upsilon^{(2)}_{3}&=&8\mu q_{2}+12k_{2}q_{2}\\ \upsilon^{(2)}_{4}&=&-2+2\mu-3k_{3}+3\mu k_{3}+2q_{1}-2\mu q_{1}+3k_{1}q_{1}-12\mu q_{1}-3k_{2}q_{2}\\ \upsilon^{(2)}_{5}&=&10-8\mu+15k_{3}-12\mu k_{3}-4q_{1}+4\mu q_{1}+8\mu q_{2}\\ \upsilon^{(2)}_{6}&=&-20+12\mu-30k_{3}+18\mu k_{3}+2q_{1}-2\mu q_{1}-2\mu q_{2}\\ \upsilon^{(2)}_{7}&=&20-8\mu+30k_{3}-12\mu k_{3}\\ \upsilon^{(2)}_{8}&=&-10+2\mu-15k_{3}+3\mu k_{3}\\ \upsilon^{(2)}_{9}&=&2+3k_{3}\\ \upsilon^{(3)}_{0}&=&-3k_{1}q_{1}\\ \upsilon^{(3)}_{1}&=&-12k_{1}q_{1}\\ \upsilon^{(3)}_{2}&=&-2q_{1}+2\mu q_{1}-18k_{1}q_{1}\\ \upsilon^{(3)}_{3}&=&-8q_{1}+8\mu q_{1}-12k_{1}q_{1}\\ \upsilon^{(3)}_{4}&=&2\mu+3\mu k_{3}-12q_{1}+12\mu q_{1}-3k_{1}q_{1}-2\mu q_{2}-3k_{2}q_{2}\\ \upsilon^{(3)}_{5}&=&2+8\mu+3k_{3}+12\mu k_{3}-8q_{1}+8\mu q_{1}-4\mu q_{2}\\ \upsilon^{(3)}_{6}&=&8+12\mu+12k_{3}+18\mu k_{3}-2q_{1}+2\mu q_{1}-2\mu q_{2}\\ \upsilon^{(3)}_{7}&=&12+8\mu+18k_{3}+12\mu k_{3}\\ \upsilon^{(3)}_{8}&=&8+2\mu+12k_{3}+3\mu k_{3}\\ \upsilon^{(3)}_{9}&=&2+3k_{3} \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suraj, M.S., Hassan, M.R. & Asique, M.C. The Photo-Gravitational R3BP when the Primaries are Heterogeneous Spheroid with Three Layers. J of Astronaut Sci 61, 133–155 (2014). https://doi.org/10.1007/s40295-014-0026-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-014-0026-9

Keywords

Navigation