Skip to main content
Log in

Taming Glutamate Excitotoxicity: Strategic Pathway Modulation for Neuroprotection

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Much work has been carried out in recent years showing that elevated glutamate levels in the extracellular environment of the central nervous system play a pivotal role in neurodegeneration in acute CNS injuries. With the elucidation of the mechanism governing glutamate excitotoxicity, researchers are devising therapeutic strategies to target different parts of the pathway which begins with glutamate accumulation and ultimately results in neuronal cell death. In this article, we review some of the major classes of agents that are currently being investigated and highlight some of the key studies for each. Glutamate scavenging is a relatively new approach that directly decreases glutamate levels in the brain, thus preventing excitotoxicity. Nitric oxide inhibitors and free radical scavengers are more well-studied strategies that continue to yield promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Teichberg V, Cohen-Kashi-Malina K, Cooper I, Zlotnik A. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience. 2009;158(1):301–8.

    Article  CAS  PubMed  Google Scholar 

  2. Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF. Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl. 1996;67:40–4.

    CAS  PubMed  Google Scholar 

  3. Shaw P, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 1995;4:209–16.

    Article  CAS  PubMed  Google Scholar 

  4. Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W. Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci. 1996;143:126–31.

    Article  CAS  PubMed  Google Scholar 

  5. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):101–5.

    Google Scholar 

  6. Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl). 2000;78(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  7. Muir K. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol. 2006;6(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  8. Benveniste H, Jørgensen MB, Diemer NH, Hansen AJ. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand. 1988;78(6):529–36.

    Article  CAS  PubMed  Google Scholar 

  9. Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 1989;36(1):106–12.

    CAS  PubMed  Google Scholar 

  10. Castillo M, Babson J. Ca2-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience. 1998;86(4):1133–44.

    Article  CAS  PubMed  Google Scholar 

  11. Li S, Stys P. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse NA(+)-dependent transport in spinal cord white matter. Neuroscience. 2001;107(4):675–83.

    Article  CAS  PubMed  Google Scholar 

  12. Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1(6):383–6.

    Article  CAS  PubMed  Google Scholar 

  13. Stoica BA, Faden AI. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics. 2010;7(1):3–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron. 2003;40(2):401–13.

    Article  CAS  PubMed  Google Scholar 

  15. Leibowitz A, Boyko M, Shapira Y, Zlotnik A. Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci. 2012;13(12):10041–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Castillo J, Davalos A, Naveiro J, Noya M. Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke. 1996;27(6):1060–5.

    Article  CAS  PubMed  Google Scholar 

  17. Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.

    Article  CAS  PubMed  Google Scholar 

  18. Andreadou E, Kapaki E, Kokotis P, Paraskevas GP, Katsaros N, Libitaki G, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg. 2008;110(3):222–6.

    Article  PubMed  Google Scholar 

  19. Stojanovic IR, Kostic M, Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J Neural Transm. 2014;121(8):945–55.

    Article  CAS  PubMed  Google Scholar 

  20. Hawkins RA, Mokashi A, Dejoseph MR, Viña JR, Fernstrom JD. Glutamate permeability at the blood-brain barrier in insulinopenic and insulin-resistant rats. Metabolism. 2010;59(2):258–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. O’kane RL. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier: a mechanism for glutamate removal. J Biol Chem. 1999;274(45):31891–5.

    Article  PubMed  Google Scholar 

  22. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;407(6767):316–21.

    Google Scholar 

  23. Caldeira MV, Salazar IL, Curcio M, Canzoniero LM, Duarte CB. Role of the ubiquitin–proteasome system in brain ischemia: friend or foe? Prog Neurobiol. 2014;112:50–69.

    Article  CAS  PubMed  Google Scholar 

  24. Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. 2014;82(2):279–93.

    Article  CAS  PubMed  Google Scholar 

  25. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.

    Article  CAS  PubMed  Google Scholar 

  26. Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, et al. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics. 2012;9(3):649–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Campos F, Sobrino T, Perez-Mato M, Rodriguez-Osorio X, Leira R, Blanco M, et al. Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients. Cephalalgia. 2013;33(14):1148–54.

    Article  PubMed  Google Scholar 

  28. Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Ruban AM, Leon A, et al. The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res. 2008;33(6):1044–50.

    Article  CAS  PubMed  Google Scholar 

  29. Van Den Tweel E, Van Bel F, Kavelaars A, Peeters-Scholte C, Haumann J, Nijboer CHA, et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab. 2005;25(1):67–74.

    Article  PubMed  Google Scholar 

  30. Aarts M. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298(5594):846–50.

    Article  CAS  PubMed  Google Scholar 

  31. Jones N. Stroke: disruption of the NNOS–PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat Rev Neurol. 2011;7(2):61.

    Article  PubMed  Google Scholar 

  32. Zhou L, Li F, Xu H-B, Luo C-X, Wu H-Y, Zhu M-M, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of NNOS with PSD-95. Nat Med. 2010;16(12):1439–43.

    Article  CAS  PubMed  Google Scholar 

  33. Boyko M, Gruenbaum SE, Gruenbaum BR, Shipira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm. 2014;121(8):971–9.

    Article  CAS  PubMed  Google Scholar 

  34. Lee J-M, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399:A7–14.

    Article  CAS  PubMed  Google Scholar 

  35. Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and NA+: implications for neurodegeneration. J Neurochem. 1994;63(2):584–91.

    Article  CAS  PubMed  Google Scholar 

  36. Ogden KK, Traynelis SF. New advances in NMDA receptor pharmacology. Trends Pharmacol Sci. 2011;32(12):726–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 2008;7(8):742–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004;1(1):101–10.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, et al. N-methyl-d-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem. 2010;115(6):1520–9.

    Article  CAS  PubMed  Google Scholar 

  40. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007;282(15):11590–601.

    Article  PubMed  Google Scholar 

  41. Gottlieb M, Wang Y, Teichberg VI. Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem. 2003;87(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  42. Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI. Brain neuroprotection by scavenging blood glutamate. Exp Neurol. 2007;203(1):213–20.

    Article  CAS  PubMed  Google Scholar 

  43. Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, et al. The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity. J Neurosurg Anesthesiol. 2009;21(3):235–41.

    Article  PubMed  Google Scholar 

  44. Baker AJ, Moulton RJ, Macmillan VH, Shedden PM. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg. 1993;79(3):369–72.

    Article  CAS  PubMed  Google Scholar 

  45. Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, Dekosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993;61(6):2015–24.

    Article  CAS  PubMed  Google Scholar 

  46. Castillo J, Dávalos A, Noya M. Progression of ischaemic stroke and excitotoxic aminoacids. Lancet. 1997;349(9045):79–83.

    Article  CAS  PubMed  Google Scholar 

  47. Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Pérez-Mato M, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab. 2011;31(6):1378–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Nagy D, Marosi M, Kis Z, Farkas T, Rakos G, Vecsei L, et al. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex. Cell Mol Neurobiol. 2009;26(6):827–35.

    Article  Google Scholar 

  49. Pérez-Mato M, Ramos-Cabrer P, Sobrino T, Blanco M, Ruban A, Mirelman D, et al. Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis. 2014;5(1):e992.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, et al. Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci. 2011;34(9):1432–41.

    Article  PubMed  Google Scholar 

  51. Knapp L, Gellért L, Kocsis K, Kis Z, Farkas T, Vécsei L, et al. Neuroprotective effect of oxaloacetate in a focal brain ischemic model in the rat. Cell Mol Neurobiol (Epub 8 May 2014).

  52. Carvalho A, Rodrigues S, Torres LB, Persike DS, Fernandes MJS, Amado D, et al. Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochem Int. 2011;58(3):385–90.

    Article  CAS  PubMed  Google Scholar 

  53. Tattersall J. Seizure activity post organophosphate exposure. Front Biosci (Landmark Ed). 2009;14:3688–711.

    Article  CAS  PubMed  Google Scholar 

  54. Ruban A, Mohar B, Jona G, Teichberg VI. Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab. 2014;34(2):221–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, et al. The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol. 2013;25(3):262–6.

    Article  PubMed  Google Scholar 

  56. Godino MeC, Romera VG, Sánchez-Tomero JA, Pacheco J, Canals S, Lerma J, et al. Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest. 2013;123(10):4359–63.

  57. Srinivasan K, Sharma SS. 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci. 2012;90(3):154–60.

    Article  CAS  PubMed  Google Scholar 

  58. Yin X-H, Yan J-Z, Hou X-Y, Wu S-L, Zhang G-Y. Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience. 2013;248:290–8.

    Article  CAS  PubMed  Google Scholar 

  59. Lu A, Wagner KR, Broderick JP, Clark JF. Administration of S-methyl-l-thiocitrulline protects against brain injuries after intracerebral hemorrhage. Neuroscience. 2014;270:40–7.

    Article  CAS  PubMed  Google Scholar 

  60. Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483(7388):213–7.

    Article  CAS  PubMed  Google Scholar 

  61. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88.

    Article  CAS  PubMed  Google Scholar 

  62. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci. 2012;13(12):11753–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Fan J, Long H, Li Y, Liu Y, Zhou W, Li Q, et al. Edaravone protects against glutamate-induced PERK/EIF2α/ATF4 integrated stress response and activation of caspase-12. Brain Res. 2013;1519:1–8.

    Article  CAS  PubMed  Google Scholar 

  65. Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang S, et al. Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;(12):CD007230.

  66. Yang J, Liu M, Zhou J, Zhang S, Lin S, Zhao H. Edaravone for acute intracerebral haemorrhage. Cochrane Database Syst Rev. 2011;(2):CD007755.

  67. Otomo E. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003;15(3):222–9.

    Article  Google Scholar 

  68. Inatomi Y, Takita T, Yonehara T, Fujioka S, Hashimoto Y, Hirano T, et al. Efficacy of edaravone in cardioembolic stroke. Int Med. 2006;45(5):253–7.

    Article  Google Scholar 

  69. Mishina M, Komaba Y, Kobayashi S, Tanaka N, Kominami S, Fukuchi T, et al. Efficacy of edaravone, a free radical scavenger, for the treatment of acute lacunar infarction. Neurol Med Chir. 2005;45(7):344–8.

    Article  Google Scholar 

  70. Ohta Y, Takamatsu K, Fukushima T, Ikegami S, Takeda I, Ota T, et al. Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Int Med. 2009;48(8):593–6.

    Article  Google Scholar 

  71. Abe M, Kaizu K, Matsumoto K. A case report of acute renal failure and fulminant hepatitis associated with edaravone administration in a cerebral infarction patient. Ther Apher Dial. 2007;11(3):235–40.

    Article  PubMed  Google Scholar 

  72. Hishida A. Clinical analysis of 207 patients who developed renal disorders during or after treatment with edaravone reported during post-marketing surveillance. Clin Exper Nephrol. 2007;11(4):292–6.

    Article  CAS  Google Scholar 

  73. Kano T, Harada T, Hirayama T, Katayama Y. Combination therapy using TPA and edaravone improves the neurotoxic effect of TPA. Interv Neuroradiol. 2007;13:106–8.

    PubMed Central  PubMed  Google Scholar 

  74. Parnham MJ, Sies H. The early research and development of ebselen. Biochem Pharmacol. 2013;86(9):1248–53.

    Article  CAS  PubMed  Google Scholar 

  75. Seo JY, Lee CH, Cho JH, Choi JH, Yoo K-Y, Kim DW, et al. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J Neurol Sci. 2009;285(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  76. Kalayci M, Coskun O, Cagavi F, Kanter M, Armutcu F, Gul S, et al. Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res. 2005;30(3):403–10.

    Article  CAS  PubMed  Google Scholar 

  77. Koizumi H, Fujisawa H, Suehiro E, Shirao S, Suzuki M. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol Med Chir. 2011;51(5):337–43.

    Article  Google Scholar 

  78. Mazzanti CM, Spanevello R, Ahmed M, Pereira LB, Gonçalves JF, Corrêa M, et al. Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int J Dev Neurosci. 2009;27(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  79. Porciúncula LO, Rocha JBT, Boeck CR, Vendite D, Souza DO. Ebselen prevents excitotoxicity provoked by glutamate in rat cerebellar granule neurons. Neurosci Lett. 2001;299(3):217–20.

    Article  PubMed  Google Scholar 

  80. Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, et al. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Stroke. 1998;29(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  81. Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, et al. Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 1999;9(2):112–8.

    Article  CAS  PubMed  Google Scholar 

  82. Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, et al. Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat Genet. 2013;45(10):1249–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Wei L, Zhang Y, Yang C, Wang Q, Zhuang Z, Sun Z. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and P38 mitogen-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol. 2014;41(2):134–8.

    Article  CAS  PubMed  Google Scholar 

  84. Wu J, Li Q, Wang X, Yu S, Li L, Wu X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One. 2013;8(3):e59843.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Kuo C-P, Lu C-H, Wen L-L, Cherng C-H, Wong C-S, Borel CO, et al. Neuroprotective effect of curcumin in an experimental rat model of subarachnoid hemorrhage. Anesthesiology. 2011;115(6):1229–38.

    CAS  PubMed  Google Scholar 

  86. Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, et al. Curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation. 2014;37(5):1544–51.

    Article  CAS  PubMed  Google Scholar 

  87. Koh P-O. Ferulic acid attenuates the injury-induced decrease of protein phosphatase 2A subunit B in ischemic brain injury. PLoS One. 2013;8(1):e54217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Ballaz S, Morales I, Rodríguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res. 2013;91(12):1609–17.

    Article  CAS  PubMed  Google Scholar 

  89. Katnik C, Cuevas J. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int J Mol Sci. 2014;15(3):3596–611.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ming Jia, Steve A. Noutong Njapo, Vaibhav Rastogi, and Vishnumurthy S. Hedna have not received any funding or have any conflicts of interest related to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnumurthy Shushrutha Hedna.

Additional information

M. Jia and S. A. Noutong Njapa are co-first authors of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Njapo, S.A.N., Rastogi, V. et al. Taming Glutamate Excitotoxicity: Strategic Pathway Modulation for Neuroprotection. CNS Drugs 29, 153–162 (2015). https://doi.org/10.1007/s40263-015-0225-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-015-0225-3

Keywords

Navigation