Skip to main content
Log in

Two new supramolecular hybrids based on bi-capped Keggin {PMo12V2O42} clusters and transition metal mixed-organic-ligand complexes

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Two supramolecular compounds [Cu(imz)2][Cu(phen)(imz)]2{[Cu(phen)]2[PMo6 VIMo6 VV2 IVO42]}(1) and [Co2(2,2′-bpy)4(C2O4)][Co(2,2′-bpy)3][PMo7 VIMo5 VV2 IVO42](2,2′-bpy)0.5·H2O(2)(phen=1,10′-phenanthroline, imz= imidazole, 2,2′-bpy=2.2′-bipyridine) have been synthesized hydrothermally and characterized by elemental analyses, infrared spectrum, UV-Vis, X-ray photoelectron spectroscopy(XPS), electron spin resonance(ESR) spectra, thermogravimetry analyses and single crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses revealed that both the compounds represent the examples of compounds based on the bi-capped Keggin polyoxoanion {PMo12V2O42} and transition metal mixed-organic-ligand coordination complexes. Compound 1 consists of bi-capped Keggin polyoxoanion [PMo12V2O42]5− supported copper coordination groups, which are further inter-connected with two types of copper complex fragments forming a 3D supramolecular framework via ππ stacking, C-H⋯O and N-H⋯O hydrothermal bonding interactions. Compound 2 is a new hybrid consisted of polyoxoanion [PMo12V2O42]4−, [Co2(2,2′-bpy)4(C2O4)]2+ and [Co(2,2′-bpy)3]2+. There are no direct interactions in compound 2, but the polyoxoanions together with two different cobalt complex groups construct a 3D supramolecular network through C-H⋯O hydrogen bonding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn J. M., Supramolecular Chemistry, VCH, New York, 1995

    Book  Google Scholar 

  2. Vögtle F., Supramolecular Chemistry, Wiley, Chichester, 1991

    Google Scholar 

  3. Lehn M., Comprehensive Supramolecular Chemistry, Pergamum, New York, 1996

    Google Scholar 

  4. Lehn J. M., Angew. Chem. Int. Ed. Eng., 1990, 29, 1304

    Article  Google Scholar 

  5. Kolotuchin S. V., Fenlon E. E., Wilson S. R., Loweth C. J., Zimmerman S. C., Angew. Chem. Int. Ed., 1995, 34, 2654

    Article  CAS  Google Scholar 

  6. Lehn J. M., Science, 2002, 295, 2400

    Article  CAS  Google Scholar 

  7. Holliday B. J., Mirkin C. A., Angew. Chem. Int. Ed., 2001, 40, 2022

    Article  CAS  Google Scholar 

  8. Eddaoudi M., Moler D. B., Li H., Chen B., Reineke T. M., O’Keeffe M., Yaghi O. M., Acc. Chem. Res., 2001, 34, 319

    Article  CAS  Google Scholar 

  9. Tian A. X., Lin X. L., Liu Y. J., Liu G. Y., Ying J., Wang X. L., Lin H. Y., J. Coord. Chem., 2012, 65, 2417

    Google Scholar 

  10. Wei M. L., Li H. H., He G. J., J. Coord. Chem., 2012, 65, 4318

    Google Scholar 

  11. Pope M. T., Heteropoly and Ispoly OXometalates, Spring-Verlag, Berlin, 1983

    Book  Google Scholar 

  12. Hill C., Chem. Rev., 1998, 98, 1

    Article  CAS  Google Scholar 

  13. Müller A., Koop M., Schiffels P., Bögge H., Chem. Commun., 1997, (18), 1715

    Google Scholar 

  14. Long D. L., Tsunashima R., Cronin L., Angew. Chem. Int. Ed. Eng., 2010, 49, 1736

    Article  CAS  Google Scholar 

  15. Xu Y., Zhu H. G., Cai H., You X. Z., Chem. Commun., 1999, (9), 787

    Google Scholar 

  16. Burkholder E., Zubieta J., Chem. Commun., 2001, (20), 2056

    Google Scholar 

  17. Khan M. L., Cevik S., Hayashi R., J. Chem. Soc. Dalton Trans., 2002, 14, 2879

    Google Scholar 

  18. Streb C. D., Long L., Cronin L., CrystEngCommun, 2006, 8, 629

    Article  CAS  Google Scholar 

  19. Cheng D. P., Khan M. A., Houser R. P., Inorg. Chem., 2001, 40, 6858

    Article  CAS  Google Scholar 

  20. Sun D. F., Cao R., Sun Y. Q., Bi W. H., Li X. J., Wang Y. Q., Shi Q., Li X., Inorg. Chem., 2003, 42, 7512

    Article  CAS  Google Scholar 

  21. Kumagai H., Arishima M., Kitagawa S., Ymada K., Kawata S., Kaizaki S., Inorg. Chem., 2002, 41, 1989

    Article  CAS  Google Scholar 

  22. Duan W. J., Cui X. B., Xu Y., Xu J. Q., Yu H. H., Yi Z. H., Cui J. W., Wang T. G., J. Solid State Chem., 2007, 180, 1875

    Article  CAS  Google Scholar 

  23. Liu Y. B., Duan L. M., Yang X. M., Xu J. Q., Zhang Q. B., Lu Y. K., Liu J., J. Solid State Chem., 2006, 179, 122

    Article  CAS  Google Scholar 

  24. Shringarpurea P., Tripuramallub B. K., Patel K., J. Coord. Chem., 2012, 64, 4016

    Article  Google Scholar 

  25. Kong Q. J., Hu M. X., Chen Y. G., J. Coord. Chem., 2012, 65, 3237

    Google Scholar 

  26. Davis M. E., Nature, 2002, 417, 813

    Article  CAS  Google Scholar 

  27. Mizuno N., Misono M., Chem. Rev., 1998, 98, 199

    Article  CAS  Google Scholar 

  28. Thiel J., Molina P. I., Symes M. D., Cronin L., Cryst. Growth Des., 2012, 12, 902

    Article  CAS  Google Scholar 

  29. Wutkowski A., Srinivasan B. R., Naik A. R., Schütt C., Näther C., Bensc W., Eur. J. Inorg. Chem., 2011, 2254

    Google Scholar 

  30. Liu C. M., Luo J. L., Zhang D. Q., Wang N. L., Chen Z. J., Zhu D. B., Eur. J. Inorg. Chem., 2004, 4774

    Google Scholar 

  31. Liu Y. B., Duan W. J., Cui X. B., Xu J. Q., Chem. Res. Chinese Universities, 2015, 31(1), 4

    Article  Google Scholar 

  32. Sha J. Q., Peng J., Tian A. X., Liu H. S., Chen J., Zhang P. P., Su Z. M., Cryst. Growth Des., 2007, 7, 2535

    Article  CAS  Google Scholar 

  33. Xiao L. N., Peng Y., Wang Y., Xu J. N., Gao Z. M., Liu Y. B., Zheng D. F., Cui X. B., Xu J. Q., Eur. J. Inorg. Chem., 2011, 12, 1997

    Article  Google Scholar 

  34. Liu C. M., Zhang D. Q., Zhu D. B., Cryst. Growth Des., 2006, 6, 524

    Article  CAS  Google Scholar 

  35. Liu C. M., Zhang D. Q., Xiong M., Zhu D. B., Chem. Commun., 2002, 1416

    Google Scholar 

  36. Shi S. Y., Pan C. L., Chen Y., Xu J. N., Cui X. B., Wang Y., Xu J. Q., Inorg. Chem. Commun., 2009, 12, 1124

    Article  CAS  Google Scholar 

  37. Pan C. L., Xu J. Q., Sun Y., Chu D. Q., Ye L., Lü Z. L., Wang T. G., Inorg. Chem. Commun., 2003, 6, 233

    Article  CAS  Google Scholar 

  38. Duan L. M., Pan C. L., Xu J. Q., Cui X. B., Xie F. T., Wang T. G., Eur. J. Inorg. Chem., 2003, 2578

    Google Scholar 

  39. Shi Z. Y., Gu X. J., Peng J., Xu Y., Wang E. B., Eur. J. Inorg. Chem., 2006, 385

    Google Scholar 

  40. Niu J. Y., Chen G., Zhao J. W., Yu C. F., Ma P. T., Wang J. P., Cryst. Growth Des., 2010, 10, 4689

    Article  CAS  Google Scholar 

  41. Wang L. M., Wang Y., Fan Y., Xiao L. N., Hu Y. Y., Gao Z. M., Zheng D. F., Cui X. B., Xu J. Q., CrystEngComm, 2014, 16, 430

    Article  CAS  Google Scholar 

  42. Lu Y. K., Cui X. B., Xu J. N., Gao Q., Chen Y., Jin J., Shi S. Y., Xu J. Q., Wang T. G., J. Coord. Chem., 2010, 63, 394

    Article  CAS  Google Scholar 

  43. Shi Z. Y., Gu X. J., Peng J., Wang E. B., J. Mole. Struct., 2005, 737, 147

    Article  CAS  Google Scholar 

  44. Xu Y., Zhu D. R., Song Y., Zheng X. F., You X. Z., J. Mole. Struct., 2006, 782, 165

    Article  CAS  Google Scholar 

  45. Himeno S., Takamoto M., Higuchi A., Maekawa M., Inorg. Chem. Acta, 2003, 348, 57

    Article  CAS  Google Scholar 

  46. Ritchie C., Burkholder E., Kögerlerb P., Cronin I., Dalton Trans., 2006, 1712

    Google Scholar 

  47. Reinoso S., Vitoria P., Lezama L., Luque A., Gutirrez-Zorrilla J. M., Inorg. Chem., 2003, 42, 3709

    Article  CAS  Google Scholar 

  48. Yuan L., Qin C., Wang X. L., Wang E. B., Chang S., Eur. J. Inorg. Chem., 2008, 4936

    Google Scholar 

  49. Tao J., Zhang X. M., Tong M. L., Chen X. M., Dalton Trans., 2001, 770

    Google Scholar 

  50. Reinoso S., Vitoria P., Felices L., Lezama L., Gutirrez-Zorrilla J. M., Inorg. Chem., 2006, 45, 108

    Article  CAS  Google Scholar 

  51. Le Y., Dong B. X., Peng J., Zhang S. Y., Song L., Ge J., CrystEng-Comm, 2013, 15, 2783

    Article  Google Scholar 

  52. Sheldrick G. M., SHELXL-97, University of Göttingen, Göttingen, 1997

    Google Scholar 

  53. Feng S. H., Xu R. R., Acc. Chem. Res., 2001, 34, 239

    Article  CAS  Google Scholar 

  54. Altermatt D., Brown I. D., Acta Crystallogr. B, 1985, 41, 240

    Article  Google Scholar 

  55. Rocchiccioli-Deltcheff C., Fournier M., Franck R., Thouvenot R., Inorg. Chem., 1983, 22, 207

    Article  CAS  Google Scholar 

  56. Sheckelton J. P., Neilson J. R., Soltan D. G., McQueen T. M., Nature Materials, 2012, 11, 493

    Article  CAS  Google Scholar 

  57. Bridges C. A., Hansen T., Wills A. S., Luke G. M., Greedan J. E., Phys. Rev. B, 2006, 74, 024426

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobing Cui or Guangsheng Pang.

Additional information

Supported by the National Natural Science Foundation of China(No.21371066).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, W., Jiao, S., Liu, X. et al. Two new supramolecular hybrids based on bi-capped Keggin {PMo12V2O42} clusters and transition metal mixed-organic-ligand complexes. Chem. Res. Chin. Univ. 31, 179–186 (2015). https://doi.org/10.1007/s40242-015-5033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5033-2

Keywords

Navigation