Skip to main content
Log in

Different Anderson-Type Polyoxometalate-Directed Metal–Organic Complexes Based on 2-Pyrazine Carboxylic Acid: Assembly, Structures and Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two different Anderson-type polyoxometalates-directed metal–organic complexes with different structures: {H2[K(H2O)5]2[Cu(pzca)(H2O)3]2(TeMo6O24)} (1) and {H[Cu(pzca)(H2O)2]2[AlMo6(OH)6O18]}·17H2O (2) (Hpzca = 2-pyrazine carboxylic acid) have been synthesized and structurally characterized by single crystal X-ray diffraction analyses, thermogravimetric analyses, IR spectra and powder X-ray diffraction analyses. Compound 1 is a 0D architecture, in which the A-type Anderson anion [TeMo6O24]6− (TeMo6) is modified by two [Cu(pzca)(H2O)3]+ cations and two [K(H2O)5]+ cations. The adjacent {[K(H2O)5]2[Cu(pzca)(H2O)3]2(TeMo6O24)} clusters are connected by hydrogen-bonding interactions, resulting in a 3D supramolecular framework. When B-type Anderson anion [AlMo6(OH)6O18]3− (AlMo6) was used in compound 2, a 2D wave-like network was obtained, in which the adjacent 1D [Cu(pzca)] n+ n chains are linked by AlMo6 anions with two terminal oxygen atoms. The types of Anderson anions play an important role in tuning the structures of the title compounds. In addition, the electrocatalytic activities of title compounds and photocatalytic activities of compound 1 have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. S. Bassil, M. Ibrahim, R. Al-Oweini, M. Asano, Z. Wang, J. Tol, N. S. Dalal, K. Y. Choi, R. Biboum, B. Keita, L. Nadjo, and U. Kortz (2011). Angew. Chem. Int. Ed. 50, 5961.

    Article  CAS  Google Scholar 

  2. J. Guo, D. Zhang, L. Chen, Y. Song, D. Zhu, and Y. Xu (2013). Dalton Trans. 42, 8454.

    Article  CAS  Google Scholar 

  3. J. H. Son, H. Choi, and Y. U. Kwon (2000). J. Am. Chem. Soc. 122, 7432.

    Article  CAS  Google Scholar 

  4. J. W. Zhao, J. L. Zhang, Y. Z. Li, J. Cao, and L. J. Chen (2014). Cryst. Growth Des. 14, 1467.

    Article  CAS  Google Scholar 

  5. K. Suzuki, F. Tang, Y. Kikukawa, K. Yamaguchi, and N. Mizuno (2014). Angew. Chem. 126, 5356.

    Article  CAS  Google Scholar 

  6. M. Mirzaeia, H. Eshtiagh-Hosseini, M. Alipour, and A. Frontera (2014). Coord. Chem. Rev. 275, 1.

    Article  CAS  Google Scholar 

  7. W. W. He, S. L. Li, H. Y. Zang, G. S. Yang, S. R. Zhang, Z. M. Su, and Y. Q. Lan (2014). Coord. Chem. Rev. 279, 141.

    Article  CAS  Google Scholar 

  8. D. Drewes, E. M. Limanski, and B. Krebs (2004). Dalton Trans. 14, 2087.

    Article  CAS  Google Scholar 

  9. M. Singh, S. E. Lofland, K. V. Ramanujachary, and A. Ramanan (2010). Cryst. Growth Des. 10, 5105.

    Article  CAS  Google Scholar 

  10. J. P. Wang, J. W. Zhao, S. Z. Li, and J. Y. Niu (2006). J. Coord. Chem. 59, 597.

    Article  CAS  Google Scholar 

  11. M. G. Liu, P. P. Zhang, J. Peng, H. X. Meng, X. Wang, M. Zhu, D. D. Wang, C. L. Meng, and K. Alimaje (2012). Cryst. Growth Des. 12, 1273.

    Article  CAS  Google Scholar 

  12. Y. F. Song, D. L. Long, and L. Cronin (2010). CrystEngComm 12, 109.

    Article  CAS  Google Scholar 

  13. X. L. Wang, N. Li, A. X. Tian, J. Ying, T. J. Li, X. L. Lin, J. Luan, and Y. Yang (2014). Inorg. Chem. 53, 7118.

    Article  CAS  Google Scholar 

  14. C. Allain, S. Favette, L. M. Chamoreau, J. Vaissermann, L. Ruhlmann, and B. Hasenknopf (2008). Eur. J. Inorg. Chem. 2008, 3433.

    Article  CAS  Google Scholar 

  15. H. Chen, H. An, X. Liu, H. Wang, Z. Chen, H. Zhang, and Y. Hu (2012). Inorg. Chem. Commun. 21, 65.

    Article  CAS  Google Scholar 

  16. X. L. Wang, Q. Gao, A. X. Tian, and G. C. Liu (2012). Cryst. Growth Des. 12, 2346.

    Article  CAS  Google Scholar 

  17. D. H. Yang, Y. F. Liang, P. T. Ma, S. Z. Li, J. P. Wang, and J. Y. Niu (2014). Inorg. Chem. 53, 3048.

    Article  CAS  Google Scholar 

  18. H. Y. Liu, H. Wu, J. Yang, Y. Y. Liu, J. F. Ma, and H. Y. Ba (2011). Cryst. Growth Des. 11, 1786.

    Article  CAS  Google Scholar 

  19. H. Y. Lin, J. Luan, X. L. Wang, J. W. Zhang, G. C. Liu, and A. X. Tian (2014). RSC Adv. 4, 62430.

    Article  CAS  Google Scholar 

  20. S. W. Zhang and P. Cheng (2015). CrystEngComm 17, 4250.

    Article  CAS  Google Scholar 

  21. X. L. Wang, N. Han, H. Y. Lin, A. X. Tian, G. C. Liu, and J. W. Zhang (2014). Dalton Trans. 43, 2052.

    Article  CAS  Google Scholar 

  22. F. J. Ma, S. X. Liu, C. Y. Sun, D. D. Liang, G. J. Ren, F. Wei, Y. G. Chen, and Z. M. Su (2011). J. Am. Chem. Soc. 133, 4178.

    Article  CAS  Google Scholar 

  23. L. Zhu, Y. L. Zhu, X. G. Meng, J. Hao, Q. Li, Y. G. Wei, and Y. B. Lin (2008). Chem. Eur. J. 14, 10923.

    Article  CAS  Google Scholar 

  24. D. H. Yang, S. Z. Li, P. T. Ma, J. P. Wang, and J. Y. Niu (2013). Inorg. Chem. 52, 14034.

    Article  CAS  Google Scholar 

  25. D. H. Yang, Y. F. Liang, P. T. Ma, S. Z. Li, J. P. Wang, and J. Y. Niu (2014). CrystEngComm 16, 8041.

    Article  CAS  Google Scholar 

  26. P. P. Zhang, J. Peng, A. X. Tian, H. J. Pang, Y. Chen, M. Zhu, D. D. Wang, M. G. Liu, and Y. H. Wang (2010). J. Coord. Chem. 63, 3610.

    Article  CAS  Google Scholar 

  27. D. H. Yang, S. Z. Li, P. T. Ma, J. P. Wang, and J. Y. Niu (2013). Inorg. Chem. 52, 8987.

    Article  CAS  Google Scholar 

  28. Y. Hu, H. An, X. Liu, J. Yin, H. Wang, H. Zhang, and L. Wang (2013). Inorg. Chem. 52, 14034.

    Article  CAS  Google Scholar 

  29. M. Singh and A. Ramanan (2011). Cryst. Growth Des. 11, 3381.

    Article  CAS  Google Scholar 

  30. M. Filowitz, R. K. C. Ho, W. G. Klemperer, and W. Shum (1979). Inorg. Chem. 18, 93.

    Article  CAS  Google Scholar 

  31. V. Lee and Y. Sasaki (1984). Chem. Lett. 1984, 1297.

    Article  Google Scholar 

  32. G. M. Sheldrick (2008). Acta Crystallogr. A 64, 112.

    Article  CAS  Google Scholar 

  33. K. Nomiya, T. Takahashi, T. Shirai, and M. Miwa (1987). Polyhedron 6, 213.

    Article  CAS  Google Scholar 

  34. J. Li, L. C. Zhang, Z. G. Sun, C. H. Tian, Z. M. Zhu, Y. Zhao, Y. Y. Zhu, J. Zhang, N. Zhang, L. Liu, and X. Lu (2008). Z. Anorg. Allg. Chem. 634, 1173.

    Article  CAS  Google Scholar 

  35. J. Q. Sha, J. Peng, Y. Q. Lan, Z. M. Su, H. J. Pang, A. X. Tian, P. P. Zhang, and M. Zhu (2008). Inorg. Chem. 47, 5145.

    Article  CAS  Google Scholar 

  36. J. E. Toth and F. C. Anson (1989). J. Am. Chem. Soc. 111, 2444.

    Article  CAS  Google Scholar 

  37. M. L. Qi, K. Yu, Z. H. Su, C. X. Wang, C. M. Wang, B. B. Zhou, and C. C. Zhu (2013). Dalton Trans. 42, 7586.

    Article  CAS  Google Scholar 

  38. A. X. Tian, Y. L. Ning, J. Ying, X. Hou, T. J. Li, and X. L. Wang (2015). Dalton Trans. 44, 386.

    Article  CAS  Google Scholar 

  39. J. Tucher, Y. L. Wu, L. C. Nye, I. Ivanovic-Burmazovic, M. M. Khusniyarov, and C. Sterb (2012). Dalton Trans. 41, 9938.

    Article  CAS  Google Scholar 

  40. P. P. Zhang, J. Peng, H. J. Pang, J. Q. Sha, M. Zhu, D. D. Wang, M. G. Liu, and Z. M. Su (2011). Cryst. Growth Des. 11, 2736.

    Article  CAS  Google Scholar 

  41. X. L. Wang, Z. H. Chang, H. Y. Lin, A. X. Tian, G. C. Liu, and J. W. Zhang (2014). Dalton Trans. 43, 12272.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21171025 and 21471021) and Program of Innovative Research Team in University of Liaoning Province (LT2012020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Li Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XL., Liu, DN., Lin, HY. et al. Different Anderson-Type Polyoxometalate-Directed Metal–Organic Complexes Based on 2-Pyrazine Carboxylic Acid: Assembly, Structures and Properties. J Clust Sci 27, 169–181 (2016). https://doi.org/10.1007/s10876-015-0918-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0918-2

Keywords

Navigation