Skip to main content
Log in

Duality in refined Sobolev–Malliavin spaces and weak approximation of SPDE

  • Published:
Stochastics and Partial Differential Equations Analysis and Computations Aims and scope Submit manuscript

Abstract

We introduce a new family of refined Sobolev–Malliavin spaces that capture the integrability in time of the Malliavin derivative. We consider duality in these spaces and derive a Burkholder type inequality in a dual norm. The theory we develop allows us to prove weak convergence with essentially optimal rate for numerical approximations in space and time of semilinear parabolic stochastic evolution equations driven by Gaussian additive noise. In particular, we combine a standard Galerkin finite element method with backward Euler timestepping. The method of proof does not rely on the use of the Kolmogorov equation or the Itō formula and is therefore non-Markovian in nature. Test functions satisfying polynomial growth and mild smoothness assumptions are allowed, meaning in particular that we prove convergence of arbitrary moments with essentially optimal rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, A., Larsson, S.: Weak convergence for a spatial approximation of the nonlinear stochastic heat equation. arXiv:1212.5564 (2012). To appear in Math. Comp

  2. Andersson, A., Kovács, M., Larsson, S.: Weak error analysis for semilinear stochastic Volterra equations with additive noise. arXiv:1411.6476 (2014)

  3. Anh, V.V., Grecksch, W., Yong, J.: Regularity of backward stochastic Volterra integral equations in Hilbert spaces. Stoch. Anal. Appl. 29, 146–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benth, F.E., Deck, T., Potthoff, J.: A white noise approach to a class of non-linear stochastic heat equations. J. Funct. Anal. 146, 382–415 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bréhier, C.-E.: Strong and weak order in averaging for SPDEs. Stoch. Proc. Appl. 122, 2553–2593 (2012)

    Article  MATH  Google Scholar 

  6. Bréhier, C.-E.: Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space-time white noise. Potential Anal. 40, 1–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bréhier, C.-E., Kopec, M.: Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme. arXiv:1311.7030 (2013)

  8. Buckwar, E., Shardlow, T.: Weak approximation of stochastic differential delay equations. IMA J. Numer. Anal. 25, 57–86 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buckwar, E., Kuske, R., Mohammed, S.-E., Shardlow, T.: Weak convergence of the Euler scheme for stochastic differential delay equations. LMS J. Comput. Math. 11, 60–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clément, E., Kohatsu-Higa, A., Lamberton, D.: A duality approach for the weak approximation of stochastic differential equations. Ann. Appl. Probab. 16, 1124–1154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, D., Sigg, M.: Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations. Numer. Math. 121, 1–29 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conus, D., Jentzen, A., Kurniawan, R.: Weak convergence rates of spectral Galerkin approximations for SPDEs with nonlinear diffusion coefficients. arXiv:1408.1108 (2014)

  13. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  14. Da Prato, G., Jentzen, A., Röckner, M.: A mild Itō formula for SPDE. arXiv:1009.3526 (2012)

  15. de Bouard, A., Debussche, A.: Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation. Appl. Math. Optim. 54, 369–399 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Debussche, A.: Weak approximation of stochastic partial differential equations: the nonlinear case. Math. Comp. 80, 89–117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Debussche, A., Printems, J.: Weak order for the discretization of the stochastic heat equation. Math. Comp. 78, 845–863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comp. 58, 603–630 (1992). S33–S36

    Article  MathSciNet  MATH  Google Scholar 

  19. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. AMS, Providence, RI (1998)

    Google Scholar 

  20. Fuhrman, M., Tessitore, G.: Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30, 1397–1465 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Geissert, M., Kovács, M., Larsson, S.: Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT 49, 343–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grorud, A., Pardoux, É.: Intégrales Hilbertiennes anticipantes par rapport à un processus de Wiener cylindrique et calcul stochastique associé. Appl. Math. Optim. 25, 31–49 (1992)

    Article  MathSciNet  Google Scholar 

  23. Hausenblas, E.: Weak approximation for semilinear stochastic evolution equations. Stoch. Anal. Relat. Top. VIII, 111–128 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Hausenblas, E.: Weak approximation of the stochastic wave equation. J. Comput. Appl. Math. 235, 33–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations, 2nd edn. Universitext, Springer, New York (2010). A modeling, white noise functional approach

    Book  MATH  Google Scholar 

  26. Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  27. Jentzen, A., Röckner, M.: Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Differ. Equ. 252, 114–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kohatsu-Higa, A.: Weak approximations. A Malliavin calculus approach. Math. Comp. 70, 135–172 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kopec, M.: Quelques contributions à l’analyse numérique d’équations stochastiques. Ph.D. Thesis (2014)

  30. Kovács, M., Larsson, S., Lindgren, F.: Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise. BIT Numer. Math. 52, 85–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kovács, M., Larsson, S., Lindgren, F.: Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes. BIT Numer. Math. 53, 497–525 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34, 217–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kruse, R.: Strong and Weak Approximation of Stochastic Evolution Equations. Lecture Notes in Mathematics, vol. 2093. Springer, Berlin (2014)

    Book  Google Scholar 

  34. Kruse, R., Larsson, S.: Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise. Electron. J. Probab. 17, 1–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. León, J.A., Nualart, D.: Stochastic evolution equations with random generators. Ann. Probab. 26, 149–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lindner, F., Schilling, R.L.: Weak order for the discretization of the stochastic heat equation driven by impulsive noise. Potential Anal. 38, 345–179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications (New York), 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  38. Øksendal, B.: Stochastic Differential Equations, 6th edn. Universitext, Springer, Berlin (2003). An introduction with applications

    Book  MATH  Google Scholar 

  39. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  40. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  41. Sanz-Solé, M.: Malliavin Calculus: With Applications to Stochastic Partial Differential Equations. Fundamental Sciences, 1st edn. Mathematics EPFL Press, Lausanne (2005)

    Book  MATH  Google Scholar 

  42. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  43. van Neerven, J.M.A.M.: Stochastic Evolution Equations. ISEM Lecture Notes (2008)

  44. Walsh, J.B.: An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, vol. XIV–1984, pp. 265–439 (1986)

  45. Wang, X.: An exponential integrator scheme for time discretization of nonlinear stochastic wave equation. arXiv:1312.5185 (2013)

  46. Wang, X.: Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. arXiv:1408.0713 (2014)

  47. Wang, X., Gan, S.: Weak convergence analysis of the linear implicit Euler method for semilinear stochastic partial differential equations with additive noise. J. Math. Anal. Appl. 398, 151–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yan, Y.: Error analysis and smoothing properties of discretized deterministic and stochastic parabolic problems. Ph.D. Thesis, http://www.math.chalmers.se/Math/Research/Preprints/Doctoral/2003/3 (2003)

  49. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43, 1363–1384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank M. Kovács for fruitful discussions during the preparation of the work [2], which led to improvements of the present paper. We also thank A. Lang and X. Wang for valuable comments on an earlier version of the manuscript and A. Jentzen for making us aware of a reference. The first two authors also acknowledge the kind support by W.-J. Beyn, B. Gentz, and the DFG-funded CRC 701 ’Spectral Structures and Topological Methods in Mathematics’ by making possible an inspiring research stay at Bielefeld University, where part of this work was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Andersson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, A., Kruse, R. & Larsson, S. Duality in refined Sobolev–Malliavin spaces and weak approximation of SPDE. Stoch PDE: Anal Comp 4, 113–149 (2016). https://doi.org/10.1007/s40072-015-0065-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-015-0065-7

Keywords

Mathematics Subject Classification

Navigation