Skip to main content

Advertisement

Log in

Optimal design of air quality monitoring network around an oil refinery plant: a holistic approach

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a multi-objective method for allocating the number and configuration of an air quality monitoring network based on non-dominated sorting genetic algorithm II has been presented. The multiple cell approach based on the solution of an Eulerian Model built on K-theory was used to predict the dispersion of emitted pollutants (SO2, CO, NO x ) from different emission sources. The multi-objective optimization method proposed in this study utilized two objectives: (1) maximum coverage area with respect to continuity of covered area and minimum overlap among coverage areas and (2) detection of violations over ambient standards. The concept of sphere of influence was used to determine the spatial area coverage of the monitoring station, and a weighing function was employed to measure the capability of a designed network to detect violations of air quality standards. The results show that three stations are suitable for the study region with coverage efficiency of 80 %. Analyzing the effect of cutoff correlation coefficient r c shows that, when the r c increases, although the coverage area decreases, the covered region will be well represented and overlap region will decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beychok MR (1994) Fundamentals of stack gas dispersion. Milton R. Beychok Irvine, Irvine

    Google Scholar 

  • Chang NB, Tseng CC (1999) Optimal evaluation of expansion alternatives for existing air quality monitoring network by grey compromise programing. J Environ Manag 56(1):61–77

    Article  Google Scholar 

  • Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for solving multi-objective problems. Genetic and evolutionary computation series, 2nd edn. Springer. doi:10.1007/978-0-387-36797-2

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol Comput IEEE Trans 6(2):182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  • Elkamel A, Fatehifar E, Taheri M, Al-Rashidi MS, Lohi A (2008) A heuristic optimization approach for air quality monitoring network design with the simultaneous consideration of multiple pollutants. J Environ Manag 88(3):507–516

    Article  CAS  Google Scholar 

  • Erfani T, Utyuzhnikov S, Kolo B (2013) A modified directed search domain algorithm for multiobjective engineering and design optimization. Struct Multidiscip Optim 48(6):1129–1141. doi:10.1007/s00158-013-0946-1

    Google Scholar 

  • Fatehifar E (2012) Design of optimal number and location of air quality monitoring networks (sensitive to emission sources) in Tabriz oil refinery. Technical report. Tabriz

  • Fatehifar E, Elkamel A, Taheri M (2006) A MATLAB-based modeling and simulation program for dispersion of multipollutants from an industrial stack for educational use in a course on air pollution control. Comput Appl Eng Educ 14(4):300–312. doi:10.1002/cae.20089

    Article  Google Scholar 

  • Fatehifar E, Elkamel A, Taheri M, Anderson W, Abdul-Wahab S (2007) Modeling and simulation of multipollutant dispersion from a network of refinery stacks using a multiple cell approach. Environ Eng Sci 24(6):795–811

    Article  CAS  Google Scholar 

  • Fatehifar E, Elkamel A, Alizadeh Osalu A, Charchi A (2008) Developing a new model for simulation of pollution dispersion from a network of stacks. Appl Math Comput 206(2):662–668

    Article  Google Scholar 

  • Ghermandi G, Teggi S, Fabbi S, Bigi A, Zaccanti MM (2014) Tri-generation power plant and conventional boilers: pollutant flow rate and atmospheric impact of stack emissions. Int J Environ Sci Technol 1–12. doi:10.1007/s13762-013-0463-1

  • Jain VK, Sharma M (2002) Air quality monitoring network design using information theory. J Environ Syst 29(3):245–267

    Article  Google Scholar 

  • Kahforoshan D, Fatehifar E, Babalou AA, Ebrahimin AR, Elkamel A, Soltanmohammadzadeh JS (2008) Modeling and evaluation of air pollution from a gaseous flare in an oil and gas processing area. Paper presented at the WSEAS conferences, Cantabria, Spain

  • Kao J-J, Hsieh M-R (2006) Utilizing multiobjective analysis to determine an air quality monitoring network in an industrial district. Atmos Environ 40(6):1092–1103

    Article  CAS  Google Scholar 

  • Kuhlbusch TJ, Quass U, Fuller G, Viana M, Querol X, Katsouyanni K, Quincey P (2013) Air pollution monitoring strategies and technologies for urban areas. In: Viana M (ed) Urban air quality in Europe, vol 26. The handbook of environmental chemistry. Springer, Berlin, pp 277–296. doi:10.1007/698_2012_213

  • Littidej P, Sarapirome S, Aunphoklang W (2012) Air pollution concentration approach to potential area selection of the air quality monitoring station in Nakhon Ratchasima Municipality, Thailand. J Environ Sci Eng A 1(4):484–494

    CAS  Google Scholar 

  • Liu MK, Avrin J, Pollack RI, Behar JV, McElroy JL (1986) Methodology for designing air quality monitoring networks: I. Theoretical aspects. Environ Monit Assess 6(1):1–11

    Article  Google Scholar 

  • Lozano A, Usero J, Vanderlinden E, Raez J, Contreras J, Navarrete B, El Bakouri H (2011) Air quality monitoring network design to control nitrogen dioxide and ozone, applied in Granada, Spain. Ozone Sci Eng 33(1):80–89. doi:10.1080/01919512.2011.536741

    Article  CAS  Google Scholar 

  • McElroy JL, Behar JV, Meyers TC, Liu MK (1986) Methodology for designing air quality monitoring networks: II. Application to Las Vegas, Nevada, for carbon monoxide. Environ Monit Assess 6(1):13–34

    Article  CAS  Google Scholar 

  • Modak P, Lohani BN (1985a) Optimization of ambient air quality monitoring networks (part I). Environ Monit Assess 5(1):1–19. doi:10.1007/bf00396391

    Article  CAS  Google Scholar 

  • Modak P, Lohani BN (1985b) Optimization of ambient air quality monitoring networks (part II). Environ Monit Assess 5(1):39–53. doi:10.1007/bf00396393

    Article  CAS  Google Scholar 

  • Mofarrah A, Husain T (2010) A holistic approach for optimal design of air quality monitoring network expansion in an urban area. Atmos Environ 44(3):432–440

    Article  CAS  Google Scholar 

  • Mofarrah A, Husain T, Alharbi BH (2011) Design of urban air quality monitoring network: fuzzy based multi-criteria decision making approach. Air Qual Monit Assess Manag. doi:10.5772/16716

  • Nejadkoorki F, Baroutian S (2012) Forecasting extreme PM 10 concentrations using artificial neural networks. Int J Environ Res 6(1):277–284

    CAS  Google Scholar 

  • Nejadkoorki F, Nicholson K, Hadad K (2011) The design of long-term air quality monitoring networks in urban areas using a spatiotemporal approach. Environ Monit Assess 172(1):215–223. doi:10.1007/s10661-010-1328-4

    Article  Google Scholar 

  • Noll KE, Mitsutomi S (1983) Design methodology for optimum dosage air monitoring site selection. Atmos Environ (1967) 17(12):2583–2590

    Article  CAS  Google Scholar 

  • Olcese LE, Toselli BM (2005) Development of a model for reactive emissions from industrial stacks. Environ Model Softw 20(10):1239–1250

    Article  Google Scholar 

  • Ragland KW, Dennis RL (1975) Point source atmospheric diffusion model with variable wind and diffusivity profiles. Atmos Environ (1967) 9(2):175–189. doi:10.1016/0004-6981(75)90066-9

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, Hoboken

    Google Scholar 

  • Serón Arbeloa FJ, Pérez Caseiras C, Latorre Andrés PM (1993) Air quality monitoring: optimization of a network around a hypothetical potash plant in open countryside. Atmos Environ Part A Gen Top 27(5):729–738

    Article  Google Scholar 

  • Sheng N, Tang UW (2013) Risk assessment of traffic-related air pollution in a world heritage city. Int J Environ Sci Technol 10(1):11–18. doi:10.1007/s13762-012-0030-1

    Article  CAS  Google Scholar 

  • Tao T, Wang J, Xin K, Li S (2014) Multi-objective optimal layout of distributed storm-water detention. Int J Environ Sci Technol 11(5):1473–1480. doi:10.1007/s13762-013-0330-0

    Article  Google Scholar 

  • Tseng CC, Chang N-B (2001) Assessing relocation strategies of urban air quality monitoring stations by GA-based compromise programming. Environ Int 26(7–8):523–541

    Article  CAS  Google Scholar 

  • Venkanna R, Nikhil GN, Siva Rao T, Sinha PR, Swamy YV (2014) Environmental monitoring of surface ozone and other trace gases over different time scales: chemistry, transport and modeling. Int J Environ Sci Technol 1–10. doi:10.1007/s13762-014-0537-8

  • WHO (1999) Monitoring ambient air quality for health impact assessment, vol 85. World Health Organization regional publications, European series

  • Zheng J, Feng X, Liu P, Zhong L, Lai S (2011) Site location optimization of regional air quality monitoring network in China: methodology and case study. J Environ Monit 13(11):3185–3195. doi:10.1039/C1EM10560D

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Tabriz Oil Refining Company with the Grant Number of financial support of 88-21/Date: 10/13/2009. The authors would like to thank the company Research and Development Department for their kindly cooperation and for providing the case study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fatehifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoroufchi Benis, K., Fatehifar, E. Optimal design of air quality monitoring network around an oil refinery plant: a holistic approach. Int. J. Environ. Sci. Technol. 12, 1331–1342 (2015). https://doi.org/10.1007/s13762-014-0723-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0723-8

Keywords

Navigation