Skip to main content
Log in

The Genomic Fabric Perspective on the Transcriptome Between Universal Quantifiers and Personalized Genomic Medicine

  • Original Article
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Numerous groups race to discover the gene biomarker whose alteration alone is indicative of a particular disease in all humans. Biomarkers are selected from the most frequently altered genes in large population cohorts. However, thousands of other genes are simultaneously affected, and, in each person, the same disease results from a unique, never-repeatable combination of gene alterations. Therefore, our Genomic Fabric Paradigm (GFP) switches the focus from the alteration of one particular gene to the overall change in selected groups of functionally related genes. Biomarkers are of little therapeutic value, their high alterability indicating low protection by the homeostatic mechanisms as for minor players. Instead of these most alterable genes in all patients, GFP identifies in each patient the genes whose highly protected expression governs major functional pathways by controlling the expression of numerous other genes. Smart manipulation of such (commander) genes would have the maximum therapeutic benefit not for everybody but for the treated person. The genomic fabric is defined as the transcriptome associated with the most interconnected and stably expressed network of genes responsible for a particular functional pathway. The fabric exhibits specificity with respect to race/strain, sex, age, tissue/cell type, and lifestyle and environmental factors. It remodels during development, progression of a disease, and in response to external stimuli. GFP is powered by mathematically advanced analytical tools whose application is illustrated by reprocessing data from previously published gene expression experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Nitrogen and oxygen atoms can combine to form six different molecules (NO, NO2, N2O, N2O3, N2O4 and N2O5), whose relative abundances in a gaseous state depend on pressure and temperature. A functional pathway is composed not of two types of atoms but of tens of types of macromolecules (transcripts or proteins). Should one expect these macromolecules to be spontaneously interlinked in one and only one way or in a wide variety of ways whose distribution of probabilities is sensitive to local conditions?

  2. Actually, owing to the expression coordination, any gene is directly or indirectly related to every functional pathway, although not with equal controlling power over the pathway.

References

  • Abraham AD, Neve KA, Lattal KM (2014) Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol Learn Mem 108:65–77

    Article  Google Scholar 

  • Adesse D, Iacobas DA, Iacobas S et al (2010) Transcriptomic signatures of alterations in a myoblast cell line infected with four strains of Trypanosoma cruzi. Am J Trop Med Hyg 82(5):846–854

    Article  Google Scholar 

  • Ballesta A, Clairambault J (2014) Physiologically based mathematical models to optimize therapies against metastatic colorectal cancer: a mini-review. Curr Pharm Des 20(1):37–48

    Article  Google Scholar 

  • Banerjee S, Oldridge D, Poptsova M et al (2011) A computational framework discovers new copy number variants with functional importance. PLoS One 6(3):e17539

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Ann Rev Biochem 72(1):291–336

    Article  Google Scholar 

  • Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Article  Google Scholar 

  • Chibon F (2013) Cancer gene expression signatures—the rise and fall? Eur J Cancer 49(8):2000–2009

    Article  Google Scholar 

  • Dahlquist KD, Salomonis N, Vranizan K et al (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31:19–20

    Article  Google Scholar 

  • Deeb KK, Hohman CM, Risch NF et al (2015) Routine clinical mutation profiling of non-small cell lung cancer using next-generation sequencing. Arch Pathol Lab Med 139(7):913–921

    Article  Google Scholar 

  • Degletagne C, Keime C, Rey B et al (2010) Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays. BMC Genom 11:344

    Article  Google Scholar 

  • Doniger SW, Salomonis N, Dahlquist KD et al (2003) MAPPFinder: using gene ontology and GenMAPP to create a global gene expression profile from microarray data. Genome Biol 4:R7

    Article  Google Scholar 

  • Draghici S (2003) Data analysis tools for DNA microarrays. Chapman & Hall, Boca Raton, London, New York, Washington DC

    Book  Google Scholar 

  • Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genom 9:516

    Article  Google Scholar 

  • Estevez-Garcia P, Rivera F, Molina-Pinelo S et al (2015) Gene expression profile predictive of response to chemotherapy in metastatic colorectal cancer. Oncotarget (Epub ahead of print)

  • Evans BJ, Burke W, Jarvik GP (2015) The FDA and genomic tests–getting regulation right. N Engl J Med 372(23):2258–2264

    Article  Google Scholar 

  • Hancock V, Vejborg RM, Klemm P (2010) Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Mol Genet Genomics 284(6):437–454

    Article  Google Scholar 

  • Hansen JP, McDonald IR (2013) Theory of simple liquids with applications to soft matter, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Henley JM, Barker EA, Glebov OO (2011) Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci 34:258–268

    Article  Google Scholar 

  • Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9(7):811–818

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  • Hommel G, Bernhard G (1994) A rapid algorithm and a computer program for multiple test procedures using logical structures of hypotheses. Comput Methods Programs Biomed 43(3–4):213–216

    Article  Google Scholar 

  • Huang W, Goldfischer M, Babyeva S (2015) Identification of a novel PARP14-TFE3 gene fusion from 10-year-old FFPE tissue by RNA-seq. Genes Chromosom Cancer. doi:10.1002/gcc.22261 (Epub ahead of print)

  • Iacobas S, Iacobas DA (2010) Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes. Neuron Glia Biol 6(3):157–169

    Article  Google Scholar 

  • Iacobas S, Iacobas DA (2012) Effects of chronic intermittent hypoxia on cardiac rhythm transcriptomic networks. In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia and human diseases. Springer, London, pp 15–28

    Chapter  Google Scholar 

  • Iacobas DA, Urban M, Iacobas S (2003) Array analysis of gene expression in connexin43 null astrocytes. Physiol Genom 15(3):177–190

    Article  Google Scholar 

  • Iacobas DA, Iacobas S, Urban-Maldonado M, Spray DC (2005) Sensitivity of the brain transcriptome to connexin ablation. Review. Biochimica et Biofisica Acta 1711:183–196

    Article  Google Scholar 

  • Iacobas DA, Iacobas S, Spray DC (2007a) Connexin43 and the brain transcriptome of the newborn mice. Genomics 89(1):113–123

    Article  Google Scholar 

  • Iacobas DA, Iacobas S, Spray DC (2007b) Connexin-dependent transcellular transcriptomic networks in mouse brain. Review. Prog Biophys Mol Biol 94(1–2):168–184

    Google Scholar 

  • Iacobas DA, Iacobas S, Urban-Maldonado M et al (2008) Similar transcriptomic alterations in Cx43 knock-down and knock-out astrocytes. Cell Commun Adhes 15(1):195–206

    Article  Google Scholar 

  • Iacobas DA, Iacobas S, Haddad GG (2010a) Heart rhythm genomic fabric in hypoxia. Biochem Biophys Res Commun 391(4):1769–1774

    Article  Google Scholar 

  • Iacobas DA, Iacobas S, Thomas N, Spray DC (2010b) Sex-dependent gene regulatory networks of the heart rhythm. Funct Integr Genom 10(1):73–86

    Article  Google Scholar 

  • Iacobas S, Iacobas DA, Spray DC, Scemes E (2012a) The connexin43 transcriptome during brain development: importance of genetic background. Brain Res 1487:131–139

    Article  Google Scholar 

  • Iacobas S, Thomas NM, Iacobas DA (2012b) Plasticity of the myelination genomic fabric. Mol Gen Genom 287:237–246

    Article  Google Scholar 

  • Iacobas DA, Iacobas S, Chachua T et al (2013a) Prenatal corticosteroids modify glutamatergic and GABAergic synapse genomic fabric: insights from a novel animal model of infantile spasms. J Neuroendocrinol 25:964–979

    Article  Google Scholar 

  • Iacobas S, Neal-Perry G, Iacobas DA (2013b) Analyzing the cytoskeletal transcriptome: sex differences in rat hypothalamus. In: Dermietzel R (ed) The cytoskeleton: imaging, isolation, and interaction. Neuromethods, vol 79. Springer, New York, pp 119–133

  • Ilsley GR, Fisher J, Apweiler R et al (2013) Cellular resolution models for even skipped regulation in the entire Drosophila embryo. Elife 2:e00522. doi:10.7554/eLife.00522

    Article  Google Scholar 

  • Kalia M (2015) Biomarkers for personalized oncology: recent advances and future challenges. Metabolism 64(3 Suppl 1):S16–S21

    Article  Google Scholar 

  • Kanagaratnam P, Cherian A, Stanbridge RD et al (2004) Relationship between connexins and atrial activation during human atrial fibrillation. J Cardiovasc Electrophysiol 15(2):206–216

    Article  Google Scholar 

  • Kershaw SK, Byrne HM, Gavaghan DJ, Osborne JM (2013) Colorectal cancer through simulation and experiment. Review. IET Syst Biol 7(3):57–73

    Article  Google Scholar 

  • Klanker M, Feenstra M, Denys D (2013) Dopaminergic control of cognitive flexibility in humans and animals. Review. eCollection. Front Neurosci 7:201

  • Kobayashi K, Hagiwara K (2013) Epidermal growth factor receptor (EGFR) mutation and personalized therapy in advanced nonsmall cell lung cancer (NSCLC). Target Oncol 8(1):27–33

    Article  Google Scholar 

  • Kohane IS, Hsing M, Kong SW (2012) Taxonomizing, sizing, and overcoming the incidentalome. Genet Med 14(4):399–404

    Article  Google Scholar 

  • Lachtermacher S, Esporcatte BLB, Fortes FSA et al (2011) Functional and transcriptomic recovery of infarcted mouse myocardium treated with bone marrow mononuclear cells. Stem Cell Rev 8(1):251–261

    Article  Google Scholar 

  • McAdams HH, Arkin A (1999) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94(3):814–819

    Article  Google Scholar 

  • Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7(4):233–245

    Article  Google Scholar 

  • Moe KT, Chung JW, Cho YI et al (2011) Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean. J Integr Plant Biol 53(1):63–73

    Article  Google Scholar 

  • Nakajima S, Gerretsen P, Takeuchi H et al (2013) The potential role of dopamine D3 receptor neurotransmission in cognition. Eur Neuropsychopharmacol 23(8):799–813

    Article  Google Scholar 

  • Nao T, Ohkusa T, Hisamatsu Y et al (2003) Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm. Am J Cardiol 91(6):678–683

  • Niklas KJ, Bondos SE, Dunker AK, Newman SA (2015) Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Front Cell Dev Biol 3:8. doi:10.3389/fcell.2015.00008

    Article  Google Scholar 

  • Polontchouk L, Haefliger JA, Ebelt B et al (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 38(3):883–891

    Article  Google Scholar 

  • Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304(5678):1811–1814

    Article  Google Scholar 

  • Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Review. Science 309(5743):2010–2013

    Article  Google Scholar 

  • Soares MB, Lima RS, Souza BSF et al (2011) Reversion of gene expression alterations in hearts of mice with chronic chagasic cardiomyopathy after transplantation of bone marrow cells. Cell Cycle 10(9):1448–1455

    Article  Google Scholar 

  • Spooren W, Lesage A, Lavreysen H et al (2010) Metabotropic glutamate receptors: their therapeutic potential in anxiety. Curr Top Behav Neurosci 2:391–413

    Article  Google Scholar 

  • Spray DC, Iacobas DA (2007) Organizational principles of the connexin-related brain transcriptome. J Membr Biol 218(1–3):39–47

    Article  Google Scholar 

  • Thomas NM, Jasmin JF, Lisanti MP, Iacobas DA (2011) Sex differences in expression and subcellular localization of heart rhythm determinant proteins. Biochem Biophys Res Commun 406(1):117–122

    Article  Google Scholar 

  • Velíšková J, Iacobas DA, Iacobas S et al (2015) Estradiol regulates neuropeptide Y release and the gene coupling with GABAergic and glutamatergic synapse in adult female rat dentate gyrus. J Neuroend 27(12):911–920

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the New York Medical College (NYMC) Department of Pathology Research Program. Dr. Sanda Iacobas (NYMC), who performed all the microarray experiments used to illustrate the theoretical approach, is acknowledged for her valuable work and critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Andrei Iacobas.

Appendices

Appendix 1: Significant Regulation of Gene Expression

Usually, a gene is considered as significantly regulated if the p value of the heteroscedastic t-test for the equality of the two distribution means is less than 0.05. The p-value can be adjusted for the occurrence of false positive results in multiple-testing using Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001), Bonferroni (Duggal et al. 2008), Hochberg and Benjamini (1990), Holm (1979), or Hommel (Hommel and Bernhard 1994) correction. I choose to apply a Bonferroni-type correction only to the redundant group of spots probing the same gene (Iacobas et al. 2005). In addition to the p-value, some authors require also that the absolute expression ratio between the compared groups of samples exceeds an arbitrarily introduced cut-off (2× or 1.5×). I prefer a composite criterion in which the absolute expression ratio |x| of gene γ in condition C2 with respect to condition C1 exceeds the combined effect of technical noise and biological variability:

$$ \begin{aligned} & \left| {\left. {x_{\gamma }^{{(c_{1} \to c_{2} )}} } \right| > 1 + \sqrt {2\left( {\left( {CV_{\gamma }^{{(C_{2} )}} } \right)^{2} + \left( {CV_{\gamma }^{{(C_{1} )}} } \right)^{2} } \right)\quad \, {\text{and}}\, \quad p_{\gamma }^{{(C_{1} \to C_{2} )}} } } \right.\left| {_{\text{Bonferroni\,correction\,for\,redundancy\,group}} < 0.05} \right. \hfill \\ & {\text{where}}\;x_{\gamma }^{(C1 \to C2)} = \left\{ {\begin{array}{*{20}c} {\frac{{\upmu_{\gamma }^{{(C_{2} )}} }}{{\upmu_{\gamma }^{{(C_{1} )}} }}} & {if\;C_{1} \le C_{2} } \\ { - \frac{{\upmu_{\gamma }^{{(C_{1} )}} }}{{\upmu_{\gamma }^{{(C_{2} )}} }}} & {if\;C_{1} > C_{2} } \\ \end{array} } \right.\begin{array}{*{20}c} , & {\underbrace {{\upmu_{\gamma }^{(C)} \equiv \overline{{a_{\gamma }^{(C)} }} }}_{{{\text{average}}\,\,{\text{expression}}\,\,{\text{level}}}}} \\ \end{array} \begin{array}{*{20}c} , & {\underbrace {{CV_{\gamma }^{(C)} \equiv \frac{{stdev(a_{\gamma }^{(C)} )}}{{\upmu_{\gamma }^{(C)} }}}}_{{{\text{coefficient}}\,\,{\text{of}}\,{\text{variation}}}}} \\ \end{array} \hfill \\ \end{aligned} $$
(3)

Appendix 2: Relative Expression Variability (REV)

REV is the mid-interval of the ε (usually 5 %) acceptable error Chi-square estimate of the transcript abundance coefficient of variation E. REV has a Bonferroni-type correction for the number R of spots on the microarray probing redundantly gene “γ”.

$$ REV_{\gamma }^{(C)} (\varepsilon ) = E_{\gamma }^{(C)} \frac{1}{2}\left( {\sqrt {\frac{{4R_{\gamma }^{(C)} - 1}}{{\chi^{2} (4R_{\gamma }^{(C)} - 1;\;1 - \varepsilon /2)}}} + \sqrt {\frac{{4R_{\gamma }^{(C)} - 1}}{{\chi^{2} \left( {4R_{\gamma }^{(C)} - 1;\;\varepsilon /2} \right)}}} } \right) \times 100\,\% $$
(4)

Appendix 3: Gene Commanding Height (GCH) of Individual Genes and the Fabric Prominence Score (FPS)

$$ GCH_{\Gamma }^{(C)} (\upgamma ) \equiv \underbrace {{\left( {\frac{{\left\langle {\left. {REV^{(C)} (\upgamma )} \right\rangle_{\Gamma } } \right.}}{{REV^{(C)} (\upgamma )}}} \right)}}_{{{\text{relative}}\,\,\,{\text{control}}}}\exp \underbrace {{\left( {\frac{{\left( {\overline{{(\rho_{\upgamma ,\uplambda }^{(C)} )^{2} }} } \right)_{\uplambda \in \Gamma ,\upbeta \ne \upgamma } }}{{\left\langle {(\rho_{\upgamma ,\uplambda }^{(C)} )^{2} } \right\rangle_{\upgamma ,\uplambda \in \Gamma ,\upbeta \ne \upgamma } }} - 1} \right)}}_{{{\text{relative}}\,\,{\text{coordination}}}},\quad FPS^{(C)} \equiv \left( {\overline{{GCH_{\Gamma }^{(C)} (\upgamma )}} } \right)_{\uplambda \in \Gamma } $$
(5)

where \( \rho_{\gamma ,\lambda }^{(C)} \) is Pearson pair-wise correlation coefficient between the expression levels of genes γ and λ in condition C, \( \left\langle X \right\rangle {\text{and}}\;\overline{X} \) denoting respectively the median and the average of the variable X in the indicated domains.

Appendix 4: Pair-Wise Relevance (PWR)

$$ PWR_{\gamma ,\lambda }^{(C)} \equiv \underbrace {{\frac{{\mu_{\gamma }^{(C)} }}{{\left\langle {\mu_{\gamma }^{(C)} } \right\rangle \varGamma }}}}_{\text{relative\,\,expression\,\,in}\,\,\varGamma \,} \times \frac{{\left\langle {REV^{(C)} (\gamma )_{\varGamma } } \right\rangle }}{{\underbrace {{REV^{(C)} (\gamma )}}_{\text{relative\,\,control\,\,in}\,\,\varGamma }}} \times \underbrace {{\left( {\rho_{\gamma ,\lambda }^{(C)} } \right)^{2} }}_{\text{coordination}} \times \frac{{\left\langle {REV^{(C)} (\lambda )} \right\rangle_{\varLambda } }}{{\underbrace {{REV^{(C)} (\lambda )}}_{\text{relative\,\,control\,\,in}\,\,\varLambda }}} \times \quad \frac{{\mu_{\lambda }^{(C)} }}{{\underbrace {{\left\langle {\mu_{\lambda }^{(C)} } \right\rangle_{\varLambda } }}_{\text{relative\,\,expression\,\,\,in}\,\,\varLambda }}}\quad \quad \left| {\begin{array}{*{20}c} {\gamma \in \varGamma ,\;\lambda \in \varLambda } \\ {\lambda \ne \gamma } \\ \end{array} } \right. $$
(6)

Appendix 5: Transcriptomic Distance (TD)

$$ \begin{aligned} \left( {TD_{\varGamma }^{(C2,C1)} } \right)^{2} & = \frac{1}{[\varGamma ]}\sum\limits_{\gamma \in \varGamma } {\left( {\underbrace {{\left( {\exp \left| {\log \left( {\frac{{a_{\gamma }^{(C2)} }}{{a_{\gamma }^{(C1)} }}} \right)} \right| - 1} \right)^{2} \left( {1 - p_{\gamma }^{(C2,C1)} } \right)^{2} }}_{{\text{regulation{\kern 1pt} {\kern 1pt} of{\kern 1pt} expression{\kern 1pt} {\kern 1pt} level}}}} \right)} \\ & \quad + \frac{1}{[\varGamma ]}\sum\limits_{\gamma \in \varGamma } {\left( {\mathop {\underbrace {{\left\langle {REV_{\gamma }^{(C1)} } \right\rangle_{\varGamma }^{2} \left( {\frac{1}{{REV_{\gamma }^{C2} }} - \frac{1}{{REV_{\gamma }^{C1} }}} \right)}}_{{\text{regulation{\kern 1pt} {\kern 1pt} of{\kern 1pt} expression{\kern 1pt} {\kern 1pt} control}}}}\limits^{2} } \right)} + \frac{1}{[\varGamma ]}\sum\limits_{\gamma \in \varGamma } {\left( {\underbrace {{\frac{{\sum\limits_{\delta \in \varGamma ,\delta \ne \gamma } {(p_{\gamma ,\delta }^{(C2)} - p_{\gamma ,\delta }^{(C1)} )^{2} } }}{[\varGamma ] - 1}}}_{{\text{regulation{\kern 1pt} {\kern 1pt} of{\kern 1pt} networking}}}} \right)} \\ \end{aligned} $$
(7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacobas, D.A. The Genomic Fabric Perspective on the Transcriptome Between Universal Quantifiers and Personalized Genomic Medicine. Biol Theory 11, 123–137 (2016). https://doi.org/10.1007/s13752-016-0245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-016-0245-3

Keywords

Navigation