Skip to main content
Log in

Pharmacophore interactions analysis and prediction of inhibitory activity of 1,7-diazacarbazoles as checkpoint kinase 1 inhibitors: application of molecular docking, 3D-QSAR and RBF neural network

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present study, we mainly focused on new synthesized 1,7-diazacarbazole derivatives (44 active molecules) as Chk1 inhibitors to build 3D-QSAR model. Comparative molecular field analysis (CoMFA) model with three principal components was developed. The relative contributions in building of CoMFA model were 64.41 % for steric field and 35.59 % for electrostatic field. R 2 values for training and test sets of CoMFA model were 0.8724 and 0.7818, respectively, and squared correlation coefficient for leave-one-out cross-validation test (q 2) was 0.6753. To improve the predictive power, a new 3D-QSAR model was developed by using radial basis function network (RBFN) and score of CoMFA interactions energy values as input variables. Scores 1, 2 and 3 were used as input variables, and a RBFN model with seven centers and spread value equal to 95 was developed to create a nonlinear 3D-QSAR model. R 2 values for training and test sets were 0.9613 and 0.8564, and q 2 for leave-one-out cross-validation test was 0.9258. Docking of all molecules to 3DX ligand binding site of Chk1 receptor indicated six interactions as pharmacological interactions between compounds and binding site of receptors. These pharmacological interactions were hydrogen bonding with LEU-15 and GLU-85 in main chain and four van der Waals interactions with LEU-15, VAL-23, TYR-86 and LEU-137 in side chain. CoMFA contour plots were used to design new inhibitors, and inhibitory activity of each compound was predicted by using CoMFA and RBFN models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Patil, N. Pabla, Z. Dong, Cell. Mol. Life Sci. 70, 4009 (2013)

    Article  CAS  Google Scholar 

  2. H. Hénon, S. Messaoudi, F. Anizon, B. Aboab, N. Kucharczyk, S. Léonce, R.M. Golsteyn, B. Pfeiffer, M. Prudhomme, Eur. J. Pharmacol. 554, 106 (2007)

    Article  Google Scholar 

  3. P.D. Lyne, P.W. Kenny, D.A. Cosgrove, C. Deng, S. Zabludoff, J.J. Wendoloski, S. Ashwell, J. Med. Chem. 47, 1962 (2004)

    Article  CAS  Google Scholar 

  4. E. Conchon, F. Anizon, B. Aboab, R.M. Golsteyn, S. Léonce, B. Pfeiffer, M. Prudhomme, Bioorg. Med. Chem. 16, 4419 (2008)

    Article  CAS  Google Scholar 

  5. N.-H. Lin, P. Xia, P. Kovar, C. Park, Z. Chen, H. Zhang, S.H. Rosenberg, H.L. Sham, Bioorg. Med. Chem. Lett. 16, 421 (2006)

    Article  CAS  Google Scholar 

  6. L. Gazzard, B. Appleton, K. Chapman, H. Chen, K. Clark, J. Drobnick, S. Goodacre, J. Halladay, J. Lyssikatos, S. Schmidt, S. Sideris, C. Wiesmann, K. Williams, P. Wub, I. Yen, S. Malek, Bioorg. Med. Chem. Lett. 24, 5704 (2014)

    Article  CAS  Google Scholar 

  7. V. Oza, S. Ashwell, P. Brassil, J. Breed, C. Deng, J. Ezhuthachan, H. Haye, C. Horn, J. Janetka, P. Lyne, N. Newcombe, L. Otterbien, M. Pass, J. Read, S. Roswell, M. Su, D. Toader, D. Yu, Y. Yu, A. Valentine, P. Webborn, A. White, S. Zabludoff, X. Zheng, Bioorg. Med. Chem. Lett. 20, 5133 (2010)

    Article  CAS  Google Scholar 

  8. V. Oza, S. Ashwell, P. Brassil, J. Breed, J. Ezhuthachan, C. Deng, M. Grondine, C. Horn, D. Liu, P. Lyne, N. Newcombe, M. Pass, J. Read, M. Su, D. Toader, D. Yu, Y. Yu, S. Zabludoff, Bioorg. Med. Chem. Lett. 22, 2330 (2012)

    Article  CAS  Google Scholar 

  9. Y. Tong, M. Przytulinska, Z.-F. Tao, J. Bouska, K.D. Stewart, C. Park, G. Li, A. Claiborne, P. Kovar, Z. Chen, P.J. Merta, M.-H. Bui, A. Olson, D. Osterling, H. Zhang, H.L. Sham, S.H. Rosenberg, T.J. Sowin, N.-H. Lin, Bioorg. Med. Chem. Lett. 17, 5665 (2007)

    Article  CAS  Google Scholar 

  10. E. Yuriev, M. Agostino, P.A. Ramsland, J. Mol. Recogn. 24, 149 (2011)

    Article  CAS  Google Scholar 

  11. E. Yuriev, P.A. Ramsland, J. Mol. Recogn. 26, 215 (2013)

    Article  CAS  Google Scholar 

  12. S.F. Sousa, P.A. Fernandes, M.J. Ramos, Proteins 65, 15 (2006)

    Article  CAS  Google Scholar 

  13. G. Sabbagh, N. Berakdar, J. Mol. Graph. Model. 61, 214 (2015)

    Article  CAS  Google Scholar 

  14. E. Nazarshodeh, F. Shiri, J.B. Ghasemi, J. Iran. Chem. Soc. 12, 1945 (2015)

    Article  CAS  Google Scholar 

  15. S. Pirhadi, F. Shiri, J.B. Ghasemi, J. Iran. Chem. Soc. 11, 1329 (2014)

    Article  CAS  Google Scholar 

  16. J.B. Ghasemi, E. Nazarshodeh, H. Abedi, J. Iran. Chem. Soc. 12, 1789 (2015)

    Article  CAS  Google Scholar 

  17. V.K. Vyas, M. Ghate, SAR QSAR Environ. Res. 24, 625 (2013)

    Article  CAS  Google Scholar 

  18. W. Yang, M. Shu, Y. Wang, R. Wang, Y. Hu, L. Meng, Z. Lin, J. Mol. Struct. 1054–1055, 107 (2013)

    Article  Google Scholar 

  19. Y. Ji, M. Shu, Y. Lin, Y. Wang, R. Wang, Y. Hu, Z. Lin, J. Mol. Struct. 1045, 35 (2013)

    Article  CAS  Google Scholar 

  20. A. Balupuri, P.K. Balasubramanian, C.G. Gadhe, S.J. Cho, SAR QSAR Environ. Res. 25, 651 (2014)

    Article  CAS  Google Scholar 

  21. S. Hu, H. Yu, L. Zhao, A. Liang, Y. Liu, H. Zhang, Med. Chem. Res. 22, 4992 (2013)

    Article  CAS  Google Scholar 

  22. R.W. Wang, L. Zhou, Z. Zuo, X. Ma, M. Yang, Mol. Simul. 36, 87 (2010)

    Article  CAS  Google Scholar 

  23. L. Gazzard, K. Williams, H. Chen, L. Axford, E. Blackwood, B. Burton, K. Chapman, P. Crackett, J. Drobnick, C. Ellwood, J. Epler, M. Flagella, E. Gancia, M. Gill, S. Goodacre, J. Halladay, J. Hewitt, H. Hunt, S. Kintz, J. Lyssikatos, C. Macleod, S. Major, G. Médard, R. Narukulla, J. Ramiscal, S. Schmidt, E. Seward, C. Wiesmann, P. Wu, S. Yee, I. Yen, S. Malek, J. Med. Chem. 58, 5053 (2015)

    Article  CAS  Google Scholar 

  24. HyperChem Release 7.1 for windows molecular modeling system program package, HyperCube, 2002

  25. http://gemdock.life.nctu.edu.tw/dock/

  26. http://openbabel.org

  27. http://open3dalign.sourceforge.net

  28. http://open3dqsar.sourceforge.net

  29. P. Tosco, T. Balle, J. Mol. Model. 17, 201 (2011)

    Article  Google Scholar 

  30. J.B. Ghasemi, F. Shiri, Med. Chem. Res. 21, 2788 (2012)

    Article  CAS  Google Scholar 

  31. http://www.pymol.org

  32. J.-M. Yang, C.-C. Chen, Proteins 55, 288 (2004)

    Article  CAS  Google Scholar 

  33. J.-M. Yang, J. Comput. Chem. 25, 843 (2004)

    Article  CAS  Google Scholar 

  34. K.-C. Hsu, Y.-F. Chen, S.-R. Lin, J.-M. Yang, BMC Bioinformatics 12(Suppl 1), S33 (2011)

    Article  Google Scholar 

  35. http://www.rcsb.org/pdb/explore/explore.do?structureId=4QYH

  36. P. Tosco, T. Balle, F. Shiri, J. Comput. Aided Mol. Des. 25, 777 (2011)

    Article  CAS  Google Scholar 

  37. N.J. Richmond, P. Willett, R.D. Clark, J. Mol. Graph. Model. 23, 199 (2004)

    Article  CAS  Google Scholar 

  38. G. Cruciani, Molecular Interaction Fields: Applications in Drug Discovery and ADME Prediction (Wiley, Weinheim, 2006)

    Google Scholar 

  39. M.A. Kastenholz, M. Pastor, G. Cruciani, E.E.J. Haaksma, T. Fox, J. Med. Chem. 43, 3033 (2000)

    Article  CAS  Google Scholar 

  40. M. Pastor, G. Cruciani, S. Clementi, J. Med. Chem. 40, 1455 (1997)

    Article  CAS  Google Scholar 

  41. M. Baroni, G. Costantino, G. Cruciani, D. Riganelli, R. Valigi, S. Clementi, Quant. Struct.-Act. Relat. 12, 9 (1993)

    Article  CAS  Google Scholar 

  42. M. Baroni, S. Clementi, G. Cruciani, G. Costantino, D. Riganelli, J. Chemom. 6, 347 (1992)

    Article  CAS  Google Scholar 

  43. M. Andersson, J. Chemom. 23, 518 (2009)

    Article  CAS  Google Scholar 

  44. S. Wold, M. Sjöström, L. Eriksson, Chemom. Intell. Lab 58, 109 (2001)

    Article  CAS  Google Scholar 

  45. G. Cruciani, M. Baroni, S. Clementi, G. Costantino, D. Riganelli, B. Skagerberg, J. Chemom. 6, 335 (1992)

    Article  CAS  Google Scholar 

  46. Z. Hassanzadeh, M. Kompany-Zareh, R. Ghavami, S. Gholami, A. Malek-Khatabi, J. Mol. Struct. 1098, 191 (2015)

    Article  CAS  Google Scholar 

  47. A. Malek-Khatabi, M. Kompany-Zare, S. Gholami, S. Bagheri, Chemom. Intell. Lab 135, 157 (2014)

    Article  CAS  Google Scholar 

  48. J.P. Doucet, A. Panaye, Three Dimensional QSAR: Applications in Pharmacology and Toxicology (Taylor and Francis, London, 2010)

    Google Scholar 

  49. A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20, 269 (2002)

    Article  CAS  Google Scholar 

  50. G. Melagraki, A. Afantitis, Chemom. Intell. Lab 123, 9 (2013)

    Article  CAS  Google Scholar 

  51. G. Melagraki, A. Afantitis, RSC Adv. 4, 50713 (2014)

    Article  CAS  Google Scholar 

  52. P.K. Ojha, I. Mitra, R.N. Das, K. Roy, Chemom. Intell. Lab 107, 194 (2011)

    Article  CAS  Google Scholar 

  53. A. Tropsha, Mol. Inf. 29, 476 (2010)

    Article  CAS  Google Scholar 

  54. D. Wang, Y. Yuan, S. Duan, R. Liu, S. Gu, S. Zhao, L. Liu, J. Xu, Chemom. Intell. Lab 143, 7 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouf Ghavami.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepehri, B., Hassanzadeh, Z. & Ghavami, R. Pharmacophore interactions analysis and prediction of inhibitory activity of 1,7-diazacarbazoles as checkpoint kinase 1 inhibitors: application of molecular docking, 3D-QSAR and RBF neural network. J IRAN CHEM SOC 13, 1525–1537 (2016). https://doi.org/10.1007/s13738-016-0869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0869-z

Keywords

Navigation