Skip to main content
Log in

Pharmacophore elucidation and 3D-QSAR analysis of a new class of highly potent inhibitors of acid ceramidase based on maximum common substructure and field fit alignment methods

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA) studies have been carried on a series of 2,4-dioxopyrimidine-1-carboxamides as acid ceramidase inhibitors. Two alignment rules for the compounds were defined using maximum common substructure and field fit. The best orientation was then searched by all-orientation search strategy, to minimize the effect of the initial orientation of the structures. The Kennard Stone algorithm was used to divide the entire set into training (25 compounds) and test (7 compounds) sets. Pharmacophore model identification was also performed using DISCOtech algorithm and refinement was carried out using GASP, to highlight important structural features that could be responsible for the inhibitory activity. All constructed models showed appropriate statistical parameters in terms of q 2 and r 2pred . Based upon the information obtained from CoMFA, CoMSIA, and developed pharmacophore pattern, some key features that may be used to design new inhibitors for acid ceramidase have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Spiegel, S. Milstien, Nat. Rev. Mol. Cell. Bio. 4, 397 (2003)

    Article  CAS  Google Scholar 

  2. A. Huwiler, U. Zangemeister-Wittke, Crit. Rev. Oncol. Hematol. 63, 150 (2007)

    Article  Google Scholar 

  3. H. Furuya, Y. Shimizu, T. Kawamori, Cancer. Metast. Rev. 30, 567 (2011)

    Article  CAS  Google Scholar 

  4. N. Okino, X. He, S. Gatt, K. Sandhoff, M. Ito, E.H. Schuchman, J. Biol. Chem. 278, 29948 (2003)

    Article  CAS  Google Scholar 

  5. Y. Liu, J. He, X. Xie, G. Su, S. Teitz-Tennenbaum, M.S. Sabel, D.M. Lubman, J. Proteome. Res. 9, 6044 (2010)

    Article  CAS  Google Scholar 

  6. R.S. Seelan, C. Qian, A. Yokomizo, D.G. Bostwick, D.I. Smith, W. Liu, Gene. Chromosome. Canc. 29, 137 (2000)

    Article  CAS  Google Scholar 

  7. A.E.M. Mahdy, J.C. Cheng, J. Li, S. Elojeimy, W.D. Meacham, L.S. Turner, A. Bai, C.R. Gault, A.S. McPherson, N. Garcia, T.H. Beckham, A. Saad, A. Bielawska, J. Bielawski, Y.A. Hannun, T.E. Keane, M.I. Taha, H.M. Hammouda, J.S. Norris, X. Liu, Mol. Ther. 17, 430 (2009)

    Article  CAS  Google Scholar 

  8. A.F. Saad, W.D. Meacham, A. Bai, V. Anelli, A.E.M. Mahdy, L.S. Turner, J. Cheng, J. Bielawski, T.E. Keane, L.M. Obeid, Y.A. Hannun, J.S. Norris, X. Liu, Cancer. Biol. Ther. 6, 1455 (2007)

    Article  CAS  Google Scholar 

  9. C.G. Wermuth, C.R. Ganellin, P. Lindberg, L.A. Mitscher, Annu. Rep. Med. Chem. 33, 385 (1998)

    Article  CAS  Google Scholar 

  10. D. Pizzirani, C. Pagliuca, N. Realini, D. Branduardi, G. Bottegoni, M. Mor, F. Bertozzi, R. Scarpelli, D. Piomelli, T. Bandiera, J. Med. Chem. 56, 3518 (2013)

    Article  CAS  Google Scholar 

  11. Y.C. Martin, M.G. Bures, E.A. Danaher, J. DeLazzer, I. Lico, P.A. Pavlik, J. Comput. Aided. Mol. Des. 7, 83 (1993)

    Article  CAS  Google Scholar 

  12. G. Jones, P. Willett, R.C. Glen, J. Comput. Aided. Mol. Des. 9, 532 (1995)

    Article  CAS  Google Scholar 

  13. R.D. Cramer, D.E. Patterson, J.D. Bunce, J. Am. Chem. Soc. 110, 5959 (1988)

    Article  CAS  Google Scholar 

  14. G. Klebe, U. Abraham, T. Mietzner, J. Med. Chem. 37, 4130 (1994)

    Article  CAS  Google Scholar 

  15. R.W. Kennard, L.A. Stone, Technometrics 11, 137 (1969)

    Article  Google Scholar 

  16. A. Ardakani, J.B. Ghasemi, Med. Chem. Res. (2013)

  17. J.B. Ghasemi, F. Shiri, Med. Chem. Res. 21, 2788 (2012)

    Article  CAS  Google Scholar 

  18. J.B. Ghasemi, E. Aghaee, A. Jabbari, Bull. Korean Chem. Soc. 34, 899 (2013)

    Article  CAS  Google Scholar 

  19. R.D. Cramer III, D.E. Patterson, J.D. Bunce, J. Am. Chem. Soc. 110, 5959 (1988)

    Article  CAS  Google Scholar 

  20. M. Clark, R.D. Cramer III, D.M. Jones, D.E. Patterson, P.E. Simeroth, Tetrahedron. Comput. Methodol. 3, 47 (1990)

    Article  CAS  Google Scholar 

  21. R.X. Wang, Y. Gao, L. Liu, L.H. Lai, J. Mol. Model. 4, 276 (1998)

    Article  CAS  Google Scholar 

  22. J.B. Ghasemi, S. Pirhadi, Collect. Czech. Chem. Comm. 76, 1447 (2011)

    Article  CAS  Google Scholar 

  23. J.B. Ghasemi, N. Meftahi, S. Pirhadi, H. Tavakoli, J. Chemometr. (2013). doi:10.1002/cem.2515

    Google Scholar 

  24. S. Pirhadi, F. Shiri, J.B. Ghasemi, Curr. Top. Med. Chem. 13, 1036 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan B. Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirhadi, S., Shiri, F. & Ghasemi, J.B. Pharmacophore elucidation and 3D-QSAR analysis of a new class of highly potent inhibitors of acid ceramidase based on maximum common substructure and field fit alignment methods. J IRAN CHEM SOC 11, 1329–1336 (2014). https://doi.org/10.1007/s13738-013-0402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0402-6

Keywords

Navigation