Skip to main content

Advertisement

Log in

High-performance polyvinylidene fluoride/poly(styrene–butadiene–styrene)/functionalized MWCNTs-SCN-Ag nanocomposite membranes

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, solution blending technique was used to fabricate nano-filtration membranes of polyvinylidene fluoride (PVDF) and poly(styrene–butadiene–styrene) (SBS) blend matrix and modified multi-walled carbon nanotubes (MWCNTs) as filler. In this regard, two types of nanofiller, thiocyanate-modified nanotubes (MWCNTs-SCN) and silver-modified nanotubes (MWCNTs-SCN-Ag), were used as reinforced nanofiller in PVDF/SBS blend to form PVDF/SBS-MWCNTs-SCN 0.01–0.1 and PVDF/SBS-MWCNTs-SCN-Ag 0.01–0.1 membranes. Fourier transform infrared; field emission scanning electron microscopy; transmission electron microscopy; X-ray photoelectron spectroscopy; Brunauer, Emmett and Teller; and tensile tests were used for the exploration of structural and physical properties. Morphology studies showed the dispersion of polymer-coated silver nanoparticles with smooth and homogeneous surface in the spongy matrix. Porous nature of membranes was also observed in high-resolution cross-section micrographs. Tensile strength of PVDF/SBS-MWCNTs-SCN 0.01–1 nanocomposite series increased from 10.2 to 13.9 MPa, while PVDF/SBS-MWCNTs-SCN-Ag 0.01–1 had values in the range of 12.6–20.1 MPa. According to TGA, PVDF/SBS-MWCNTs-SCN revealed maximum decomposition temperature around 550–580 °C, while PVDF/SBS-MWCNTs-SCN-Ag had T max of 567–599 °C. The influence of various filler content on membrane performance and structure was studied using pertinent methods and techniques. Percentage of water content of PVDF/SBS-MWCNTs-SCN 0.01–0.1 was estimated around 1.08–2.80 % and this value was further increased to 1.94–4.65 % in silver nanoparticle-modified system. Moreover, the porosity of silver nanoparticle-modified system was found superior compared with the other composites. Pure water flux, salt rejection, and recovery were also found optimal for 0.05 wt% silver nanoparticle-based modified system. According to the consequences, novel membranes have fine nano-filtration characteristics to be utilized in advance water treatment industrial units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ye H, Wang J, Wang Y, Chen X-P, Shi S-P (2013) Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes. Iran Polym J 23:623–633

    Article  Google Scholar 

  2. Song Y, Zhen W, Han W, Zhou Y, Sun J (2014) Polymethylmethacrylate grafting onto polyvinyl alcohol/modified feldspar composites: preparation, properties and structure characterization. Iran Polym J 23:375–386

    Article  CAS  Google Scholar 

  3. El-Bourawi MS, Ding Z, Ma R, Khayet MA (2006) A framework for better understanding membrane distillation separation process. J Membr Sci 285:4–29

    Article  CAS  Google Scholar 

  4. Řezníčková A, Makajová Z, Kasálková NS, Kolská Z, Bačáková L, Švorčík V (2014) Growth of muscle cells on plasma-treated and gold nanoparticles-grafted polytetrafluoroethylene. Iran Polym J 23:227–236

    Article  Google Scholar 

  5. Kausar A (2014) A study on high-performance poly(azo-pyridine-benzophenone-imide) nanocomposites via self-reinforcement of electrospun nanofibers. Iran Polym J 23:127–136

    Article  CAS  Google Scholar 

  6. Li Y, Li X, Guo H, Wang Z, Li T (2014) Effect on properties of PVDF-HFP based composite polymer electrolyte doped with nano-SiO2. Iran Polym J 23:487–494

    Article  CAS  Google Scholar 

  7. Julinova M, Slavik R, Kalendova A, Smida P, Kratina J (2014) Biodeterioration of plasticized PVC/montmorillonite nanocomposites in aerobic soil environment. Iran Polym J 23:547–557

    Article  CAS  Google Scholar 

  8. Patel G, Sureshkumar MB (2014) Preparation of PAM/PVA blending films by solution-cast technique and its characterization: a spectroscopic study. Iran Polym J 23:153–162

    Article  CAS  Google Scholar 

  9. Lang M, Zhang J (2013) Non-isothermal crystallization behavior of poly(vinylidene fluoride)/ethylene–vinyl acetate copolymer blends. Iran Polym J 22:821–831

    Article  CAS  Google Scholar 

  10. Fontananova E, Jansen JC, Cristiano A, Curcio E, Drioli E (2006) Effect of additives in the casting solution on the formation of PVDF membranes. Desalination 192:190–197

    Article  CAS  Google Scholar 

  11. Lin DJ, Chang CL, Chen TC, Cheng LP (2002) On the structure of porous poly(vinylidene fluoride) membrane prepared by phase inversion from water-NMP-PVDF system. Tamkang J Sci Eng 5:95–98

    Google Scholar 

  12. Lin DJ, Chang HH, Chen TC, Lee YC, Cheng LP (2006) Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. Eur Polym J 42:1581–1594

    Article  CAS  Google Scholar 

  13. Khayet M, Mengual JI, Matsuura T (2005) Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation. J Membr Sci 252:101–113

    Article  CAS  Google Scholar 

  14. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Article  CAS  Google Scholar 

  15. Feng C, Khulbe KC, Matsuura T, Gopal R, Kaur S, Ramakrishna S, Khayet M (2008) Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J Membr Sci 311:1–6

    Article  CAS  Google Scholar 

  16. Ajami N, Bahrami Panah N, Danaee I (2014) Oxytetracycline nanosensor based on poly-ortho-aminophenol/multi-walled carbon nanotubes composite film. Iran Polym J 23:121–126

    Article  CAS  Google Scholar 

  17. Eskandari M, Hosseini SH, Adeli M, Pourjavadi A (2014) Polymer-functionalized carbon nanotubes in cancer therapy: a review. Iran Polym J 23:387–403

    Article  CAS  Google Scholar 

  18. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2003) Aligned multiwalled carbon nanotube membranes. Science 303:62–65

    Article  Google Scholar 

  19. Skoulidas AI, Ackerman DM, Sholl Janson J K D S (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89:185901–185904

    Article  Google Scholar 

  20. Kim ES, Hwang G, El-Din MG, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394:37–48

    Article  Google Scholar 

  21. Kurumada KI, Kitamura T, Fukumoto N, Oshima M, Tanigaki M, Kanazawa SI (1998) Structure generation in PTFE porous membranes induced by the uniaxial and biaxial stretching operations. J Memb Sci 149:51–57

    Article  CAS  Google Scholar 

  22. Alarcón CDH, Pennadam S, Alexander C (2005) Stimuli respon- sive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Article  Google Scholar 

  23. Wienk IM, Boom RM, Beerlage MAM, Bulte AMW, Smolders CA, Strathmann H (1996) Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J Membr Sci 113:361–371

    Article  CAS  Google Scholar 

  24. Deshmukh SP, Li K (1998) Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes. J Membr Sci 150:75–85

    Article  CAS  Google Scholar 

  25. Liu F, Hashim NA, Liu Y, Abed MR, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27

    Article  CAS  Google Scholar 

  26. Lee CH, McCloskey BD, Cook J, Lane O, Xie W, Freeman BD, McGrath JE (2012) Disulfonated poly(arylene ether sulfone) random copolymer thin film composite membrane fabricated using a benign solvent for reverse osmosis application. J Membr Sci 389:363–371

    Article  CAS  Google Scholar 

  27. Mohmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal—a review. Environ Sci Pollut Res 20:1239–1260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Siddiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehwish, N., Kausar, A. & Siddiq, M. High-performance polyvinylidene fluoride/poly(styrene–butadiene–styrene)/functionalized MWCNTs-SCN-Ag nanocomposite membranes. Iran Polym J 24, 549–559 (2015). https://doi.org/10.1007/s13726-015-0346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0346-z

Keywords

Navigation