Skip to main content
Log in

Oxytetracycline nanosensor based on poly-ortho-aminophenol/multi-walled carbon nanotubes composite film

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Poly-ortho-aminophenol (PoAP) and multi-walled carbon nanotubes (MWCNTs) were deposited on the platinum electrode using cyclic voltammetry technique to form the Pt/PoAP/MWCNTs nanosensor for the electrochemical determination of oxytetracycline as analyte. This electrochemical nanosensor with good uniformity and high surface area was prepared in the presence of an ionic surfactant (sodium dodecyl sulfate) as electrolyte to suspend carbon nanotubes within the PoAP and improve the stability and electroactivity of the composite film. The surface morphology of the prepared nanosensor was characterized by scanning electron microscopy and showed a three-dimensional network structure. The influence of several parameters such as number of potential cycles, scan rate and pH of the solution on the electrochemical response of the resultant electrode was investigated. The prepared electrode functioned as a selective recognition element for oxytetracycline determination. It showed excellent electrochemical response to oxytetracycline at low oxidative potential in buffer solution of pH 2.0, with good stability and sensitivity. Under the optimal experimental conditions, the electrochemical response of the sensor was linear with respect to the concentration of oxytetracycline in a dynamic range of 0.2 μM–0.25 mM. The detection limit of the fabricated nanosensor was calculated as 0.10 μM (signal/noise = 3). This sensor was used successfully for the oxytetracycline determination in real samples with recoveries of 96.9–103.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang HY, Park SM (2007) Polypyrrole-based optical probe for a hydrogen peroxide assay. Anal Chem 79:240–245

    Article  CAS  Google Scholar 

  2. Pan X, Zhou S, Chen Ch, Kan J (2006) Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline. Sens Actuators B Chem 113:329–334

    Article  CAS  Google Scholar 

  3. Keyhanpour A, Seyed Mohaghegh SM, Jamshidi A (2012) Electropolymerization and characterization of polyaniline, poly(2-anilinoethanol) and poly(aniline-co-2-anilinoethanol). Iran Polym J 21:307–315

    Article  CAS  Google Scholar 

  4. Li J, Shi L, An Y, Li Y, Chen X, Dong H (2006) Reverse micelles of star-block copolymer as nanoreactors for preparation of gold nanoparticles. Polymer 47:8480–8487

    Article  CAS  Google Scholar 

  5. Liu L-P, Yin Zh-J, Yang Zh-Sh (2010) A l-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode. Bioelectrochemistry 79:84–89

    Article  CAS  Google Scholar 

  6. Li J, Zhao J, Wei X (2009) A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol. Sens Actuators B Chem B 140:663–669

    Article  CAS  Google Scholar 

  7. Chen Ch, Sun Ch, Gao Y (2009) Amperometric sensor for hydrogen peroxide based on poly(aniline-co-p-aminophenol). Electrochem Commun 11:450–453

    Article  CAS  Google Scholar 

  8. Kan X, Zhou H, Li Ch, Zhu A, Xing Z, Zhao Zh (2012) Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta 63:69–75

    Article  CAS  Google Scholar 

  9. Nabid MR, Sedghi R, Sharifi R, Abdi Oskooie H, Heravi MM (2013) Removal of toxic nitrate ions from drinking water using conducting polymer/MWCNTs nanocomposites. Iran Polym J 22:85–92

    Article  CAS  Google Scholar 

  10. Pradhan AK, Swain SK (2013) Synthesis and characterization of poly(acrylonitrile-co-methylmethacrylate) nanocomposites reinforced by functionalized multiwalled carbon nanotubes. Iran Polym J 22:369–376

    Article  CAS  Google Scholar 

  11. Benvidi A, Kakoolaki P, Zare HR, Vafazadeh R (2011) Electrocatalytic oxidation of hydrazine at a Co(II) complex multi-wall carbon nanotube modified carbon paste electrode. Electrochim Acta 56:2045–2050

    Article  CAS  Google Scholar 

  12. Zamani MM, Fereidoon A, Sabet A (2012) Multi-walled carbon nanotube-filled polypropylene nanocomposites: high velocity impact response and mechanical properties. Iran Polym J 21:887–894

    Article  CAS  Google Scholar 

  13. Schnappinger D, Hillen W (1996) Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 165:359–369

    Article  CAS  Google Scholar 

  14. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol R 65:232–260

    Article  CAS  Google Scholar 

  15. Wang Y, Liu W-H, Wang K-M, Shen G-L, Yu R-Q (1998) Fluorescence optical fiber sensor for tetracycline. Talanta 47:33–42

    Article  CAS  Google Scholar 

  16. Debuf Y (1988) The veterinary formulary. Pharmaceutical Press, London (97)

    Google Scholar 

  17. De Wasch K, Okerman L, De Brabander H, Van Hoof J, De Backer P (1998) Detection of residues of tetracycline antibiotics in pork and chicken meat: correlation between results of screening and confirmatory tests. Analyst 123:2737–2741

    Article  Google Scholar 

  18. Jeon M, Paeng IR (2008) Quantitative detection of tetracycline residues in honey by a simple sensitive immunoassay. Anal Chim Acta 626:180–185

    Article  CAS  Google Scholar 

  19. Croubels SM, Vanoosthuyze KE, Van Peteghem CH (1997) Use of metal chelate affinity chromatography and membrane-based ion-exchange as clean-up procedure for trace residue analysis of tetracyclines in animal tissues and egg. J Chromatogr B 690:173–179

    Article  CAS  Google Scholar 

  20. Pena ALS, Lino CM, Silveira IN (1999) Determination of oxytetracycline, tetracycline, and chlortetracycline in milk by liquid chromatography with postcolumn derivatization and fluorescence detection. J AOAC Int 82:55–60

    CAS  Google Scholar 

  21. Pellegrini GE, Carpico G, Coni E (2004) Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk. Anal Chim Acta 520:13–18

    Article  CAS  Google Scholar 

  22. Monser L, Darghouth F (2000) Rapid liquid chromatographic method for simultaneous determination of tetracyclines antibiotics and 6-epi-doxycycline in pharmaceutical products using porous graphitic carbon column. J Pharm Biomed Anal 23:353–362

    Article  CAS  Google Scholar 

  23. Ng M, Linder SW (2003) HPLC separation of tetracycline analogues: comparison study of laser-based polarimetric detection with UV detection. J Chromatogr Sci 41:460–466

    Article  CAS  Google Scholar 

  24. Kowalski P (2008) Capillary electrophoretic method for the simultaneous determination of tetracycline residues in fish samples. J Pharm Biomed Anal 47:487–493

    Article  CAS  Google Scholar 

  25. Han S, Liu E, Li H (2006) Determination of tetracycline, chlortetracycline and oxytetracycline by flow injection with inhibitory chemiluminescence detection using copper(II) as a probe ion. Luminescence 21:106–111

    Article  CAS  Google Scholar 

  26. Pastor-Navarro N, Morais S, Maquieira Á, Puchades R (2007) Synthesis of haptens and development of a sensitive immunoassay for tetracycline residues application to honey samples. Anal Chim Acta 594:211–218

    Article  CAS  Google Scholar 

  27. Jeon M, Kim J, Paeng K-J, Park S-W (2008) Biotin–avidin mediated competitive enzyme-linked immunosorbent assay to detect residues of tetracyclines in milk. Microchem J 88:26–31

    Article  CAS  Google Scholar 

  28. Virolainen NE, Pikkemaat MG, Elferink JWA, Karp MT (2008) Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor. J Agric Food Chem 56:11065–11070

    Article  CAS  Google Scholar 

  29. Ehsani A, Mahjani MG, Jafarian M, Naeemy A (2010) An electrochemical study of the synthesis and properties of multi-walled carbon nanotube/poly-ortho-aminophenol composites. Prog Org Coat 69:510–516

    Article  CAS  Google Scholar 

  30. Ojani R, Raoof J-B, Safshekan S (2009) Poly(o-aminophenol) film prepared in the presence of sodium dodecyl sulfate: application for nickel ion dispersion and the electrocatalytic oxidation of methanol and ethylene glycol. Electrochim Acta 54:2190–2196

    Article  CAS  Google Scholar 

  31. Shaolin M (2004) Electrochemical copolymerization of aniline and o-aminophenol. Synth Met 143:259–268

    Article  Google Scholar 

  32. Yang Ch-Sh, Wen T-Ch (1994) Electrochemical copolymerization of aniline para-phenylenediamine on IrO2-coated titanium electrode. J Appl Electrochem 24:166–178

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner LR (2001) Elecrochemical methods: fundamentals and applications, chap. 6. Wiley, New York

    Google Scholar 

  34. Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energ Environ Sci 4:1592–1605

    Article  CAS  Google Scholar 

  35. Tucceri RI (2003) Specularity change on a thin gold film surface coated with poly(o-aminophenol) during the polymer redox conversion. The pH effect on the redox sites distribution at the metal–polymer interface. J Electroanal Chem 543:61–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of this research by Payame Noor University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloufar Bahrami Panah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajami, N., Bahrami Panah, N. & Danaee, I. Oxytetracycline nanosensor based on poly-ortho-aminophenol/multi-walled carbon nanotubes composite film. Iran Polym J 23, 121–126 (2014). https://doi.org/10.1007/s13726-013-0207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0207-6

Keywords

Navigation