Skip to main content
Log in

Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The novel modified polyurethane (PU) membranes were prepared by β-cyclodextrin (CD) cross-linking and SiO2/carbon fiber filler, simultaneously. The structures, thermal stabilities, morphologies, and surface properties were characterized by FTIR, TGA, SEM, and contact angle. The results showed that the addition of inorganic particles increased the thermal stabilities of PU membranes. The modified PU membranes possessed more hydrophobic surfaces than pure PU. In the swelling investigation, PU and its modified membranes were swelled gradually with increasing phenol content in the mixture. The membranes modified by CD cross-linking (PUCD) demonstrated the highest swelling degree. Pervaporation (PV) performances were investigated in the separation of phenol from water. Three kinds of modified membranes obtained better permeability and selectivity than PU membranes. With the feed mixture of 0.5 wt% phenol at 60 °C, the modified PU membrane by CD cross-linking and SiO2 filler (PUCD-S) obtained the total flux of 5.92 kg μm m−2 h−1 which was above doubled that of PU (2.90 kg μm m−2 h−1). The modified PU membrane by CD cross-linking and carbon fiber filling (PUCD-C) obtained the separation factor of 51.31 which was nearly tripled that of PU (17.72). The PUCD membranes showed both better permeability and selectivity than the pure PU membranes. The increased phenol content induced an increased separation factor of PUCD and PU, but a decreased selectivity of PUCD-S and PUCD-C. The methods of CD cross-linking and inorganic particle filling were effective to develop the overall separation performances, greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ye H, Li JD, Lin YZ, Chen J, Chen CX (2008) Preparation and pervaporation performances of PEA-based polyurethaneurea and polyurethaneimide membranes to benzene/cyclohexane mixture. J Macromol Sci, Pure Appl Chem 45:563–571

    Article  CAS  Google Scholar 

  2. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450

    Article  CAS  Google Scholar 

  3. Herrera-Alonso JM, Marand E, Little JC, Cox SS (2009) Transport properties in polyurethane/clay nanocomposites as barrier materials: effect of processing conditions. J Membrane Sci 337:208–214

    Article  CAS  Google Scholar 

  4. Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367–3381

    Article  CAS  Google Scholar 

  5. Lue SJ, Ou JS, Kuo CH, Chen HY, Yang TH (2010) Pervaporative separation of azeotropic methanol/toluene mixtures in polyurethane–poly(dimethylsiloxane) (PU–PDMS) blend membranes: correlation with sorption and diffusion behaviors in a binary solution system. J Membrane Sci 347:108–115

    Article  CAS  Google Scholar 

  6. Gupta T, Pradhan NC, Adhikari A (2003) Separation of phenol from aqueous solution by pervaporation using HTPB-based polyurethaneurea membrane. J Membrane Sci 217:43–53

    Article  CAS  Google Scholar 

  7. Gupta T, Pradhan NC, Adhikari B (2002) Synthesis and performance of a novel polyurethaneurea as pervaporation membrane for the selective removal of phenol from industrial waste water. Bull Mater Sci 25:533–536

    Article  CAS  Google Scholar 

  8. Das S, Banthia AK, Adhikari B (2008) Porous polyurethane urea membranes for pervaporation separation of phenol and chlorophenols from water. Chem Eng J 138:215–223

    Article  CAS  Google Scholar 

  9. Bai YX, Qian JW, Zhang CF, Zhang L, An QF, Chen HL (2008) Cross-linked HTPB-based polyurethaneurea membranes for recovery of ethyl acetate from aqueous solution by pervaporation. J Membrane Sci 325:932–939

    Article  CAS  Google Scholar 

  10. Roizard D, Nilly A, Lochon P (2001) Preparation and study of cross-linked polyurethane films to fractionate toluene-n-heptane mixtures by pervaporation. Sep Purif Technol 22–23:45–52

    Article  Google Scholar 

  11. Das S, Banthia AK, Adhikari B (2006) Pervaporation separation of DMF from water using a crosslinked polyurethane urea-PMMA IPN membrane. Desalination 197:106–116

    Article  CAS  Google Scholar 

  12. Kusakabe K, Yoneshige S, Morooka S (1998) Separation of benzene/cyclohexane mixtures using polyurethane–silica hybrid membranes. J Membrane Sci 149:29–37

    Article  CAS  Google Scholar 

  13. Lue SJ, Liaw T-H (2006) Separation of xylene mixtures using polyurethane—zeolite composite membranes. Desalination 193:137–143

    Article  CAS  Google Scholar 

  14. Lue SJ, Peng SH (2003) Polyurethane (PU) membrane preparation with and without hydroxypropyl-β-cyclodextrin and their pervaporation characteristics. J Membrane Sci 222:203–217

    Article  CAS  Google Scholar 

  15. Jiang LY, Chuang TS (2009) β-Cyclodextrin containing Matrimid® sub-nanocomposite membranes for pervaporation application. J Membrane Sci 327:216–225

    Article  CAS  Google Scholar 

  16. Ye H, Wang J, Chen XP (2013) Preparation, characterization and separation performances of novel dual modified PU membranes with carbon fiber filling. J Macromol Sci, Pure Appl Chem 50:340–349

    CAS  Google Scholar 

  17. Burton BB, Kang SW, Rhee SW, George SM (2009) SiO2 atomic layer deposition using tris(dimethylamino)silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy. J Phys Chem C 113:8249–8257

    Article  CAS  Google Scholar 

  18. Yuvaraj H, Shim JJ, Lim KT (2010) Organic–inorganic polypyrrole-surface modified SiO2 hybrid nanocomposites: a facile and green synthetic approach. Polym Adv Technol 21:424–429

    CAS  Google Scholar 

  19. Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50:945–952

    Article  CAS  Google Scholar 

  20. Yi S, Su Y, Wan Y (2010) Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution. J Membrane Sci 360:341–351

    Article  CAS  Google Scholar 

  21. Yu LY, Xu ZL, Shen HM, Yang H (2009) Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method. J Membrane Sci 337:257–265

    Article  CAS  Google Scholar 

  22. Chen Q, Zhang R, Wang J, Li L, Guo X (2012) Spherical particles of α-, β- and γ-cyclodextrin polymers and their capability for phenol removal. Mater Lett 79:156–158

    Article  CAS  Google Scholar 

  23. Zhao D, Zhao L, Zhu CS, Huang WQ, Hu JL (2009) Water-insoluble β-cyclodextrin polymer crosslinked by citric acid: synthesis and adsorption properties toward phenol and methylene blue. J Incl Phenom Macro 63:195–201

    Article  CAS  Google Scholar 

  24. Baruch-Tebluma E, Mastai Y, Landfester K (2010) Miniemulsion polymerization of cyclodextrin nanospheres for water purification from organic pollutants. Eur Polym J 46:1671–1678

    Article  Google Scholar 

  25. Zhang C, Yang L, Bai Y, Gu J, Sun Y (2012) ZSM-5 filled polyurethaneurea membranes for pervaporation separation isopropyl acetate from aqueous solution. Sep Purif Technol 85:8–16

    Article  CAS  Google Scholar 

  26. Sinha B, Ghosh UK, Pradhan NC, Adhikari B (2006) Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes. J Appl Polym Sci 101:1857–1865

    Article  CAS  Google Scholar 

  27. Das S, Banthia AK, Adhikari B (2006) Pervaporation separation of aqueous chlorophenols by a novel polyurethane urea–poly (methyl methacrylate) interpenetrating network membrane. J Membrane Sci 280:675–683

    Article  CAS  Google Scholar 

  28. Kujawski W, Warszawski A, Ratajczak W, Porebski T, Capała W, Ostrowskab I (2004) Application of pervaporation and adsorption to the phenol removal from wastewater. Sep Purif Technol 40:123–132

    Article  CAS  Google Scholar 

  29. Sforça ML, Yoshida IVP, Borges CP, Nunes SP (2001) Hybrid membranes based on SiO2/polyether-b-polyamide: morphology and applications. J Appl Polym Sci 82:178–185

    Article  Google Scholar 

  30. Pithan F, Staudt-Bickel C (2003) Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation. Chem Phys Chem 4:967–973

    Article  Google Scholar 

  31. Wu P, Field RW, England R, Brisdon B (2001) A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams. J Membrane Sci 190:147–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the financial support of the National Natural Science Foundation of China (No. 20906001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, H., Wang, J., Wang, Y. et al. Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes. Iran Polym J 22, 623–633 (2013). https://doi.org/10.1007/s13726-013-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0161-3

Keywords

Navigation