Skip to main content

Advertisement

Log in

Comparative Measures of Lean Body Tissues in the Clinical Setting

  • Gastroenterology, Critical Care, and Lifestyle Medicine (SA McClave, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Age-related decreases in muscle mass and function, known as sarcopenia, have been shown to be related to functional limitation, frailty, and an increase in morbidity and mortality. While the most accurate method to assess muscle mass is biopsy, this is impractical clinically. There are numerous methods to assess skeletal muscle mass including dual-energy X-ray absorptiometry (DEXA) and bioelectrical impedance analysis (BIA) which are low cost and accessible. There are also more specific standards for assessing muscle mass or cross-sectional muscle area including magnetic resonance imaging (MRI) and computerized tomography (CT). Each method has its own advantages and limitations in clinical practice. Other emerging methods include peripheral quantitative CT and ultrasound. The ideal test would be valid and reliable, low cost, and practical combined with simple measurements of isometric strength to define sarcopenia and predict future health events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.

    Article  CAS  PubMed  Google Scholar 

  2. Dvir D, Cohen J, Singer P. Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr. 2006;25(1):37–44.

    Article  PubMed  Google Scholar 

  3. Villet S, Chiolero RL, Bollmann MD, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24(4):502–9.

    Article  PubMed  Google Scholar 

  4. Al-Majid S, Gray DP. A biobehavioral model for the study of exercise interventions in cancer-related fatigue. Biol Res Nurs. 2009;10(4):381–91.

    Article  PubMed  Google Scholar 

  5. Finnerty CC, Jeschke MG, Qian WJ, et al. Determination of burn patient outcome by large-scale quantitative discovery proteomics. Crit Care Med. 2013;41(6):1421–34.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hart DW, Wolf SE, Chinkes DL, et al. Determinants of skeletal muscle catabolism after severe burn. Ann Surg. 2000;232(4):455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morley JE, Argiles JM, Evans WJ, et al. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 2010;11(6):391–6. Provides Society for Sarcopenia, Cachexia, and Wasting Disease recommendations for prevention and management of sarcopenia, advocating for exercise with both adequate protein and energy intake.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cuenca AG, Cuenca AL, Winfield RD, et al. Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia. J Immunol. 2014;192(12):6111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schefold JC, Bierbrauer J, Weber-Carstens S. Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle. 2010;1(2):147–57.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Delano MJ, Moldawer LL. The origins of cachexia in acute and chronic inflammatory diseases. Nutr Clin Pract. 2006;21(1):68–81.

    Article  PubMed  Google Scholar 

  11. WHO Consultation on Obesity. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii, 1–253.

  12. Martino JL, Stapleton RD, Wang M, et al. Extreme obesity and outcomes in critically ill patients. Chest. 2011;140(5):1198–206.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pickkers P, de Keizer N, Dusseljee J, Weerheijm D, van der Hoeven JG, Peek N. Body mass index is associated with hospital mortality in critically ill patients: an observational cohort study. Crit Care Med. 2013;41(8):1878–83. A large observational database supports the obesity paradox in critically ill patients—an inverse association between obesity and hospital mortality.

    Article  PubMed  Google Scholar 

  14. Akinnusi ME, Pineda LA, El Solh AA. Effect of obesity on intensive care morbidity and mortality: a meta-analysis. Crit Care Med. 2008;36(1):151–8.

    Article  PubMed  Google Scholar 

  15. Hutagalung R, Marques J, Kobylka K, et al. The obesity paradox in surgical intensive care unit patients. Intensive Care Med. 2011;37(11):1793–9.

    Article  PubMed  Google Scholar 

  16. Arabi YM, Dara SI, Tamim HM, et al. Clinical characteristics, sepsis interventions and outcomes in the obese patients with septic shock: an international multicenter cohort study. Crit Care. 2013;17(2):R72.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hauner H. Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc. 2005;64(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  18. Bornstein SR, Licinio J, Tauchnitz R, et al. Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm, in cortisol and leptin secretion. J Clin Endocrinol Metab. 1998;83(1):280–3.

    Article  CAS  PubMed  Google Scholar 

  19. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61. A biochemical study showing resolution of inflammation to be an active biochemical set of programs to return inflamed tissues to baseline.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wendel M, Paul R, Heller AR. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med. 2007;33(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  21. Kalantar-Zadeh K, Streja E, Molnar MZ, et al. Mortality prediction by surrogates of body composition: an examination of the obesity paradox in hemodialysis patients using composite ranking score analysis. Am J Epidemiol. 2012;175(8):793–803.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Adamo ML, Farrar RP. Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process. Ageing Res Rev. 2006;5(3):310–31.

    Article  CAS  PubMed  Google Scholar 

  23. Weijs PJ, Vansant GA. Validity of predictive equations for resting energy expenditure in Belgian normal weight to morbid obese women. Clin Nutr. 2010;29(3):347–51.

    Article  PubMed  Google Scholar 

  24. Thoresen L, Frykholm G, Lydersen S, et al. Nutritional status, cachexia and survival in patients with advanced colorectal carcinoma. Different assessment criteria for nutritional status provide unequal results. Clin Nutr. 2013;32(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  25. Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35.

    Article  PubMed  Google Scholar 

  26. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.

    Article  PubMed  Google Scholar 

  27. Delmonico MJ, Harris TB, Lee JS, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55(5):769–74.

    Article  PubMed  Google Scholar 

  28. Bartali B, Frongillo EA, Bandinelli S, et al. Low nutrient intake is an essential component of frailty in older persons. J Gerontol A Biol Sci Med Sci. 2006;61(6):589–93.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mangione KK, Miller AH, Naughton IV. Cochrane review: improving physical function and performance with progressive resistance strength training in older adults. Phys Ther. 2010;90(12):1711–5.

    Article  PubMed  Google Scholar 

  30. Campbell WW. Synergistic use of higher-protein diets or nutritional supplements with resistance training to counter sarcopenia. Nutr Rev. 2007;65(9):416–22.

    Article  PubMed  Google Scholar 

  31. Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87(1):150–5.

    CAS  PubMed  Google Scholar 

  32. Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR. Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008;87(5):1562S–6.

    CAS  PubMed  Google Scholar 

  33. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56.

    Article  CAS  PubMed  Google Scholar 

  34. Hubbard RE, Woodhouse KW. Frailty, inflammation and the elderly. Biogerontology. 2010;11(5):635–41.

    Article  PubMed  Google Scholar 

  35. Hubbard RE, O’Mahony MS, Calver BL, Woodhouse KW. Nutrition, inflammation, and leptin levels in aging and frailty. J Am Geriatr Soc. 2008;56(2):279–84.

    Article  PubMed  Google Scholar 

  36. Villareal DT, Smith GI, Sinacore DR, Shah K, Mittendorfer B. Regular multicomponent exercise increases physical fitness and muscle protein anabolism in frail, obese, older adults. Obesity (Silver Spring). 2011;19(2):312–8.

    Article  CAS  Google Scholar 

  37. Manning EM, Shenkin A. Nutritional assessment in the critically ill. Crit Care Clin. 1995;11(3):603–34.

    CAS  PubMed  Google Scholar 

  38. Chi-Fishman G, Hicks JE, Cintas HM, Sonies BC, Gerber LH. Ultrasound imaging distinguishes between normal and weak muscle. Arch Phys Med Rehabil. 2004;85(6):980–6.

    Article  PubMed  Google Scholar 

  39. Freilich RJ, Kirsner RL, Byrne E. Isometric strength and thickness relationships in human quadriceps muscle. Neuromuscul Disord. 1995;5(5):415–22.

    Article  CAS  PubMed  Google Scholar 

  40. Mueller N, Murthy S, Tainter CR, et al. Can sarcopenia quantified by ultrasound of the rectus femoris predict adverse outcome of surgical intensive care patients as well as frailty? A prospective, observational cohort study. Ann Surg. 2015.

  41. Grimm A, Teschner U, Porzelius C, et al. Muscle ultrasound for assessment of illness neuromyopathy in severe sepsis. Crit Care. 2013;17(5):R227.

  42. Takai Y, Katsumata Y, Kawakami Y, Kanehisa H, Fukunaga T. Ultrasound method for estimating the cross-sectional area of the psoas major muscle. Med Sci Sports Exerc. 2011;43(10):2000–4.

    Article  PubMed  Google Scholar 

  43. Miyatani M, Kanehisa H, Ito M, Kawakami Y, Fukunaga T. The accuracy of volume estimates using muscle thickness measurements in different muscle groups. Eur J Appl Physiol. 2004;91(2-3):264–72.

    Article  PubMed  Google Scholar 

  44. Sanada K, Kearns CF, Midorikawa T, Abe T. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol. 2006;96(1):24–31.

    Article  PubMed  Google Scholar 

  45. Berger A. Bone mineral density scans. BMJ. 2002;325(7362):484.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Visser M, Fuerst T, Lang T, Salamone L, Harris TB. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, Aging, and Body Composition Study—Dual-Energy X-ray Absorptiometry and Body Composition Working Group. J Appl Physiol (1985). 1999;87(4):1513–20.

    CAS  Google Scholar 

  47. Wang ZM, Visser M, Ma R, et al. Skeletal muscle mass: evaluation of neutron activation and dual-energy X-ray absorptiometry methods. J Appl Physiol (1985). 1996;80(3):824–31.

    CAS  Google Scholar 

  48. Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Skarulis MC. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring). 2009;17(6):1281–6.

    Google Scholar 

  49. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159(4):413–21.

    Article  PubMed  Google Scholar 

  50. Levine JA, Abboud L, Barry M, Reed JE, Sheedy PF, Jensen MD. Measuring leg muscle and fat mass in humans: comparison of CT and dual-energy X-ray absorptiometry. J Appl Physiol (1985). 2000;88(2):452–6.

    CAS  Google Scholar 

  51. Reid KF, Naumova EN, Carabello RJ, Phillips EM, Fielding RA. Lower extremity muscle mass predicts functional performance in mobility-limited elders. J Nutr Health Aging. 2008;12(7):493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.

    Article  PubMed  Google Scholar 

  53. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol (1985). 1986;60(4):1327–32.

    CAS  Google Scholar 

  54. Máttar JA. Application of total body bioimpedance to the critically ill patient. Brazilian Group for Bioimpedance Study. New Horiz. 1996;4(4):493–503.

    Google Scholar 

  55. Sheean PM, Peterson SJ, Gomez Perez S, et al. The prevalence of sarcopenia in patients with respiratory failure classified as normally nourished using computed tomography and subjective global assessment. JPEN J Parenter Enteral Nutr. 2014;38(7):873–9.

    Article  PubMed  Google Scholar 

  56. Hanna JS. Sarcopenia and critical illness: a deadly combination in the elderly. JPEN J Parenter Enteral Nutr. 2015;39(3):273–81.

    Article  PubMed  Google Scholar 

  57. Denison HJ, Cooper C, Sayer AA, Robinson SM. Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging. 2015;10:859–69.

    PubMed  PubMed Central  Google Scholar 

  58. Deutz NE, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33(6):929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enteral Nutr. 2016;40(2):159–211.

    Article  CAS  Google Scholar 

  60. Berger A. Magnetic resonance imaging. BMJ. 2002;324(7328):35.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ross R, Pedwell H, Rissanen J. Effects of energy restriction and exercise on skeletal muscle and adipose tissue in women as measured by magnetic resonance imaging. Am J Clin Nutr. 1995;61(6):1179–85.

    CAS  PubMed  Google Scholar 

  62. Ross R, Rissanen J, Pedwell H, Clifford J, Shragge P. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol (1985). 1996;81(6):2445–55.

    CAS  Google Scholar 

  63. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr. 2002;76(2):378–83.

    CAS  PubMed  Google Scholar 

  64. Visser M, Goodpaster BH, Kritchevsky SB, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60(3):324–33.

    Article  PubMed  Google Scholar 

  65. Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol. 2004;91(1):116–8.

    Article  PubMed  Google Scholar 

  66. Pahor M, Manini T, Cesari M. Sarcopenia: clinical evaluation, biological markers and other evaluation tools. J Nutr Health Aging. 2009;13(8):724–8. Reviews the most common methods to assess sarcopenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panna A. Codner.

Ethics declarations

Conflict of Interest

Panna A. Codner declares that she has no conflict of interest.

Kristin Shields declares that she has no conflict of interest.

Matthew Kappus declares that he has no conflict of interest.

Bryan Collier has received honoraria for lectures from the Nestlé Nutrition Institute and Abbott Nutrition.

Martin Rosenthal declares that he has no conflict of interest.

Robert G. Martindale declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Gastroenterology, Critical Care, and Lifestyle Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codner, P.A., Shields, K., Kappus, M. et al. Comparative Measures of Lean Body Tissues in the Clinical Setting. Curr Nutr Rep 5, 191–198 (2016). https://doi.org/10.1007/s13668-016-0169-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-016-0169-3

Keywords

Navigation