Skip to main content
Log in

Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive ‘Perfection’ and ‘Midnight’ Kentucky bluegrass (Poa pratensis L.)

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The study was conducted to clarify the effects of silicon on the salt-sensitive ‘Perfection’ and ‘Midnight’ Kentucky bluegrass (Poa pratensis L.). The 400 mM NaCl treatment reduced shoot length, fresh and dry weight of shoot and root as well as relative water content and chlorophyll and carotenoid content in both cultivars. The NaCl caused an increase in electrolyte leakage, malondialdehyde concentration and H2O2 in both cultivars. This physiological interferences and visually noticeable disturbances in Kentucky bluegrass were significantly alleviated by the addition of silicon after salt stress. In ‘Perfection’, for example, 0.1 mM silicon application after NaCl treatment significantly increased in the shoot length by 48%, the fresh weight of the shoot by 72%, the relative water content by 61%, and the total chlorophyll content by 57%. Compared to the NaCl-only treatment, significant reduction in the electrolyte leakage and the concentration of malondialdehyde and H2O2 were observed in silicon treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agarie, S., N. Hanaoka, O. Ueno, A. Miyazaki, F. Kubota, W. Agata, and P.B. Kaufman. 1998. Effects of silicon on tolerance to water deficit and heat stress in rice plant (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1:96–103.

    Article  Google Scholar 

  • Ahmad, R., S.H. Zaheer, and S. Ismail. 1992. The role of silicon in salt tolerance of wheat (Triticum aestiuvum L.). Plant Sci. 85:43–50.

    Article  CAS  Google Scholar 

  • Alian, A., A. Altman, and B. Heuer. 2000. Genotype difference in salinity and water stress tolerance of fresh market tomato cultivars. Plant Sci. 152:59–65.

    Article  CAS  Google Scholar 

  • Apse. M.P. and E. Blumwald. 2002. Engineering salt tolerance in plants. Curr. Opin. Biotech. 13:146–150.

    Article  PubMed  CAS  Google Scholar 

  • Asada, K. 1994. Production and action of active oxygen species in photosynthetic tissues, p. 100–104. In: H. Foyer and P.M. Mullineaux (eds.). Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Barr, H.D. and P.E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci. 15:413–428.

    Google Scholar 

  • Belkhodja, R., F. Morales, A. Abadia, J. Gomez-Aparisi, and J. Abadia. 1994. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol. 104:667–673.

    PubMed  CAS  Google Scholar 

  • Bonilla, P.S. and M. Tsuchiya. 1998. Induction of salt tolerance in rice by silica treatment. Philip. J. Crop Sci. 23:35–44.

    Google Scholar 

  • Borsani, O., V. Valpuesta, and M.A. Botella. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 126: 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T.H. and N. Murata. 2002. Enhancement of tolerance to abiotic stress by metabolic engineering of betaine and other compatible solutes. Curr. Opin. Plant Biol. 5:250–257.

    Article  PubMed  CAS  Google Scholar 

  • Davis, K.J.A. 1995. Oxidative stress: The paradox of aerobic life, p. 1–32. In: C. Rice-Evans, B. Halliwell, and G.G. Lunt (eds.). Free radicals and oxidative stress: Environment, drugs, and food additives. Biochem. Soc. Symp. 61., Portlant Press, London, U.K.

    Google Scholar 

  • Dudeck, A.E., C.H. Peacock, and J.C. Wildmon. 1993. Physiological and growth responses of St. Augustinegrass cultivars to salinity. HortScience 28:46–48.

    Google Scholar 

  • Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Ntal. Acad. Sci. USA 91:11–17.

    Article  CAS  Google Scholar 

  • Fadzilla, N.M., R.P. Finch, and R.H. Burdon. 1997. Salinity, oxidative stress and antioxidant reponses in shoot cultures of rice. J. Exp. Bot. 48:325–331.

    Article  CAS  Google Scholar 

  • Gong, H.J., X.Y. Zhu, K.M. Chen, S.M. Wang, and C.L. Zhang. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169:313–321.

    Article  CAS  Google Scholar 

  • Heath, R.L. and L. Pacher. 1968. Photo peroxidation in isolated chloroplast I. Kinetics and stoichemistry of fatty acid peroxidation. Arch. Biochem. Biophy. 125:189–198.

    Article  CAS  Google Scholar 

  • Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Circ. 347. Univ. of Calif. Agric. Exp. Station, Berkley.

    Google Scholar 

  • Hurkman, W.J. and C.K. Tanaka. 1986. Solublization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 81:802–806.

    Article  PubMed  CAS  Google Scholar 

  • Kaya, C., B.E. AK, D. Higgs, and B. Murillo-Amador. 2002. Influence of foliar applied calcium nitrate on strawberry plants grown under salt stress conditions. Aust. J. Exp. Agric. 42:631–636.

    Article  CAS  Google Scholar 

  • Korndorfer, G.H. and I. Lepsch. 2001. Effect of silicon on plant growth and crop yield, p. 133–147. In: L.E. Datonoff, G.H. Korndorfer, and G.H. Synder (eds.). Silicon in agriculture. Elsevier Science, New York.

    Chapter  Google Scholar 

  • Liang, Y.C. 1999. Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224.

    Article  CAS  Google Scholar 

  • Liang, Y.C., Q. Chen, W.H. Zhang, and R.X. Ding. 2003. Exogenous silicon (Si) increase antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160:1157–1164.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y.C., Q.R. Shen, Z.G. Shen, and T.S. Ma. 1996. Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr. 19:173–183.

    Article  CAS  Google Scholar 

  • Liang, Y.C., W.H. Zhang, Q. Chen, and R.X. Ding. 2005. Effects of silicon on tonoplast H+-ATPase and H+-PPase activity, fatty acid composition and fluidity in roots of salt-stressed barley (Hordeum vulgare L.). Environ. Exp. Bot. 53:29–37.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382.

    Article  CAS  Google Scholar 

  • Liu, J., X. Xie, J. Du, J. Sun, and X. Bai. 2008. Effects of simultaneous drought and heat stress on kentucky bluegrass. Scientia Hort. 115:190–195.

    Article  Google Scholar 

  • Lutts, S., J.M. Kinet, and J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78:389–398.

    Article  CAS  Google Scholar 

  • Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 50:11–18.

    Article  CAS  Google Scholar 

  • Ma, J.F. and Y. Naoki. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392–397.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.F. and E. Takahashi. 2002. Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam.

    Google Scholar 

  • Matoh, T., P. Kairusmee, and E. Takahashi. 1986. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci. Plant Nutr. 32:295–304.

    Article  CAS  Google Scholar 

  • Miyake, Y. 1992. The effect of silicon on the salt tolerance of cucumber and tomato plants, p. 93–99. Scientific reports of the faculty of agriculture. Vol. 80. Okayama University, Okayama.

    Google Scholar 

  • Stamatakis, A., N. Papadantonakis, D. Savvas, N. Lydakis-Simantiris, and P. Kefalas. 2003. Effect of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Hort. 609: 141–147.

    Google Scholar 

  • Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative stress and antioxidant systems in acid rain-treated bean plants-protective some of exogenous polyamines. Plant Sci. 151:59–66.

    Article  CAS  Google Scholar 

  • Yeo, A.R., M.E. Yeo, S.A. Flowers, and T.J. Flowers. 1990. Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor. Appl. Gen. 79:377–384.

    Article  Google Scholar 

  • Zhu, Z.J., G.Q. Wei, J. Li, Q.Q. Qian, and J.Q. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167:527–533.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chae Shin Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, E.J., Lee, K.S., Huh, M.R. et al. Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive ‘Perfection’ and ‘Midnight’ Kentucky bluegrass (Poa pratensis L.). Hortic. Environ. Biotechnol. 53, 477–483 (2012). https://doi.org/10.1007/s13580-012-0094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-012-0094-3

Additional key words

Navigation