Skip to main content
Log in

Microstructural Properties of Chemically Synthesized Cubic ZnS Nanocrystals

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper we present microstructural properties of chemically synthesized cubic zinc sulfide (ZnS) nanocrystals, investigated by X-ray diffraction (XRD) line profile analysis applying classical Williamson-Hall (WH) and modified Williamson-Hall (MWH) methods, and transmission electron microscopy (TEM) observations. ZnS nanocrystals are synthesized using 1:1 M ratio of Zn and S precursors with 25, 50, and 75 mM, 2-mercaptoethanol as capping agent. WH analyses show that the average crystallite sizes (lattice strain) are  3.98 nm (2.22 × 10−2), 2.69 nm (1.99 × 10−2), and 2.58 nm (2.65 × 10−2). Dislocation contrast factors of ZnS crystals required for the MWH method are calculated from their elastic stiffness constants for various proportions of screw and edge dislocations. The best fit to MWH equation is found to be for dislocation contrast factors corresponding to 100 % edge dislocations and thereby suggesting edge dislocations are main contributors to strain. MWH analyses show dislocation density of 3.65, 2.69, and 2.47 nm crystallites are 3.19 × 1018 m−2, 2.58 × 1018 m−2, and 4.62 × 1018 m−2 , respectively. The crystallite sizes as estimated from the WH, MWH, and TEM studies are found to be intercorrelated. Presence of edge dislocations, as suggested by the MWH analysis, is confirmed by high resolution TEM (HRTEM) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4

Similar content being viewed by others

References

  1. M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris, L.E. Brus, Nature 383, 802 (1996)

    Article  ADS  Google Scholar 

  2. S Kan, T. Mokari, E. Rothenberg, U. Banin, Nature Mater. 2, 155 (2003).

  3. D. Vollath, Nanomaterials: an introduction to synthesis, properties and applications, 2nd edn. (Wiley-VCH, Weinheim, Germany, 2013)

    Google Scholar 

  4. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  5. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Chem. Eur. J. 8, 28 (2002)

    Article  Google Scholar 

  6. W. Qin, J.A. Szpunar, Phil. Mag. Lett. 85, 649 (2006)

    Article  ADS  Google Scholar 

  7. M.P.C. Kalita, K. Deka, J. Das, N. Hazarika, P. Dey, R. Das, S. Paul, T. Sarmah, B.K. Sarma, Mater. Lett. 87, 84 (2012)

    Article  Google Scholar 

  8. T.D. Shen, R.B. Schwarz, J.D. Thompson, Phys. Rev. B 72, 014431 (2005)

    Article  ADS  Google Scholar 

  9. M.P.C. Kalita, A. Perumal, A. Srinivasan, J. Phys. D Appl. Phys. 42, 105001 (2009)

    Article  ADS  Google Scholar 

  10. A.M. Smith, A.M. Mohs, S. Nie, Nature Nanotech. 4, 56 (2009)

    Article  ADS  Google Scholar 

  11. N. Pote, C. Phadnis, K. Sonawane, V. Sudarsan, S. Mahamuni, Sol. Stat. Comm. 192, 6 (2014)

    Article  ADS  Google Scholar 

  12. C.H. Kuo, L.K. Lamontagne, C.N. Brodsky, L.Y. Chou, J. Zhuang, B.T. Sneed, M.K. Sheehan, C.K. Tsung, Chem. Sus. Chem. 6, 1993 (2013)

    Article  Google Scholar 

  13. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, Prog. Mater. Sci. 56, 175 (2011)

    Article  Google Scholar 

  14. S. Cholan, N. Shanmugam, N. Kannadasan, K. Sathishkumar, G. Viruthagiri, Mater. Resear. Exp. 1, 025010 (2014)

    Article  ADS  Google Scholar 

  15. F.A. La Porta, L. Gracia, J. Andres, J.R. Sambrano, J.A. Varela, E. Longo, J. Am, Ceram. Soc. (2014). doi:10.1111/jace.13191

    Google Scholar 

  16. F.A. La Porta, M.M. Ferrer, Y.V.B. de Santana, C.W. Raubach, V.M. Longo, J.R. Sambrano, E. Longo, J. Andres, M.S. Li, J.A. Varela, J. All. Comp. 556, 153 (2013)

    Article  Google Scholar 

  17. F.A. La Porta, J. Andres, M.S. Li, J.R. Sambrano, J.A. Varela, E. Longo, Phys. Chem. Chem. Phys. 16, 20127 (2014)

    Article  Google Scholar 

  18. S.A. Acharya, N. Maheswari, L. Tatikondewar, A. Kshirsagar, S.K. Kulkarni, Cryst. Growth Des. 13, 1369 (2013)

    Article  Google Scholar 

  19. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  20. J. Gubicza, J. Szepvolgyi, I. Mohai, G. Ribarik, T. Ungar, J. Mater. Scien. 35, 3711 (2000)

    Article  ADS  Google Scholar 

  21. T. Ungar, A. Borbely, Appl. Phys. Lett. 69, 3137 (1996)

    Article  Google Scholar 

  22. T. Ungar, G. Tichy, Phys. Stat. Sol. A 171, 425 (1999)

    Article  ADS  Google Scholar 

  23. T. Ungar, I. Dragomir, A. Revesz, A. Borbely, J. Appl. Cryst. 32, 992 (1999)

    Article  Google Scholar 

  24. A. Revesz, T. Ungar, A. Borbely, J. Lendvai, Nanostruct. Mater. 7, 779 (1996)

    Article  Google Scholar 

  25. D. Berlincourt, H. Jaffe, L.R. Shiozawa, Phys. Rev. 129, 1009 (1963)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by DST, India vide project no SB/FTP/PS-008/2013. We thank the Department of Physics, IITG for providing XRD facility and SAIF, North-Eastern Hill University, Shillong for providing the TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. C. Kalita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, K., Kalita, M.P.C. Microstructural Properties of Chemically Synthesized Cubic ZnS Nanocrystals. Braz J Phys 45, 36–40 (2015). https://doi.org/10.1007/s13538-014-0283-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0283-x

Keywords

Navigation