Skip to main content
Log in

Emergence of multi drug resistance strains causing diabetic foot infection in Salem, Tamil Nadu, India

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

This study was to assess the emergence of mecA and bla CTX-M in multidrug resistant MRSA/MRSE and ESBL strains in diabetic foot infections. A total of 160 pus samples were collected from the diabetic foot care hospitals, Salem, Tamil Nadu, India. The samples were processed for microbiological investigations and further evaluating the resistant strains. The bacterial strain Staphylococcus aureus was the predominant organisms isolated from the sample. Cefoxitin, Oxacillin and Vancomycin were found to be the most effective antimicrobial agents for therapy of gram positive organisms while Meropenem, Piperacillin, Cefoperazone/Sulbactam, Piperacillin/ Tazobactam and Amikacin were found to be the most effective antimicrobial agents for the gram negative organisms. In this study, four isolates of Methicillin resistant Staphylococcus aureus (MRSA) strains, one isolate of Methicillin resistant Staphylococcus epidermidis (MRSE) and five isolates of Pseudomonas aeruginosa were found to be extended spectrum of β - lactamase (ESBL) producers by phenotypic method. These strains subjected to genotypic confirmation confirmed the presence of resistant genes namely bla CTX-M in ESBL and SCC mecA in Staphylococcus spp. The 16S rRNA partial gene sequencing and phylogenetic analysis of the multi drug resistant organisms Pseudomonas aeruginosa (APS01) and Staphylococcus epidermidis (APS02) was confirmed the resistant pattern in these strains. The resistant organism was eradicated only by the effective management of this infection; knowledge on the causative agent causing cruel diabetic foot infections will be very useful in selecting the appropriate therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abd Hamead Hefni A, Metwally R, Ibrahim Khaled M, Attia Mahmoud M, Moawad Ayman F, Eramah Mohamed M, et al. Bacteriological study of diabetic foot infection in Egypt. J Arab Soc Med Res. 2013;8:26–32.

    Google Scholar 

  2. Edward Boyko J, Jessie Ahroni H, Stensel V, Ruby Forsberg C, Denise Davignon R, Douglas Smith G. A prospective study of risk factors for diabetic foot ulcer. Diabetes Care. 1999;22(7):1036–42.

    Article  Google Scholar 

  3. Mendes JJ, Marques Costa A, Vilela C, Neves J, Candeias N, Cavaco Silva P, et al. Clinical and bacteriological survey of diabetic foot infections in Lisbon. Diab Res Clin Pract. 2012;95:153–61.

    Article  CAS  Google Scholar 

  4. Bonnet R. Growing group of extended-spectrum b-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gadepalli R, Dhawan B, Sreenivas V, Kapil A, Ammini AC, Chaudhry R. A clinico-microbiological study of diabetic foot ulcers in an Indian tertiary care hospital. Diabetes Care. 2006;29:1727–32.

    Article  PubMed  Google Scholar 

  6. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol. 2006;24:25–9.

    Article  CAS  PubMed  Google Scholar 

  7. Zubair M, Malik A, Ahmad J. Study of plasmid mediated extended spectrum beta lactamase producing strains of Enterobacteriaceae, isolated from foot infections in north Indian tertiary care hospital. Diabetes Technol Therap. 2012;12(4):315–24.

    Article  Google Scholar 

  8. John Holt G. Bergey’s Manual of Determinative Bacteriology. 9th Edition. United States of America; 2000.

  9. Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 11th Edition. 2012; 32: 1.

  10. Sambrook, Russell. Molecular cloning - a laboratory manual. 3rd ed. Newyork: Cold spring harbor laboratory press; 2001.

    Google Scholar 

  11. Leela Rani K, Madhumathi, Belwadi S, Ramana BV. Bacteriological profile of diabetic foot ulcer. Int J Pharma Res Bio. 2013;2(2):36–45.

    Google Scholar 

  12. Dhanasekaran G, Sastry G, Viswanathan M. Microbial pattern of soft tissue infections in diabetic patients in South India. Asian J Diabet. 2003;5:8–10.

    Google Scholar 

  13. Tiwari S, Pratyush DD, Dwivedi A, Gupta SK, et al. Microbiological and clinical characteristics of diabetic foot infections in northern India. J Infect Dev Ctries. 2012;6(4):329–32.

    PubMed  Google Scholar 

  14. Abdulrazak A, Bitar ZI, Al-Shamali AA, Mobasher LA. Bacteriological study of diabetic foot infections. J Diab Complicat. 2005;19:138–41.

    Article  Google Scholar 

  15. Sharma VK, Khakda PB, Joshi A, Sharma R. The common pathogens which were isolated from diabetic foot infections in Bir hospital. Kathmandu Univ Med J. 2006;4(3):295–301.

    CAS  Google Scholar 

  16. Rajalakshmi V, Amsaveni V. Antibiotic susceptibility of bacterial pathogens isolated from diabetic patients. Int J Microbio Res. 2012;3(1):30–2.

    CAS  Google Scholar 

  17. Lipsky BA. Empirical therapy for diabetic foot infections: are there clinical clues to guide antibiotic selection. Clin Microbiol Infect. 2007;13:351–3.

    Article  CAS  PubMed  Google Scholar 

  18. Citron DM, Goldstein EJC, Merriam CV, Lipsky BA, Abraham MA. Bacteriology of the moderate to severe diabetic foot infections and the in vitro activity of the antimicrobial agents. J Clin Microbiol. 2007;45(9):2819–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zubair M, Malik A, Ahmadb J. The impact of creatinine clearance on the outcome of diabetic foot ulcers in north Indian tertiary care hospital. Diabetes Met Syn: Clin Res Rev. 2011;5:120–5.

    Article  Google Scholar 

  20. Zhang K, McClure JA, Elsayed S, Conly JM. Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class a mec and type 4 ccr gene complexes in a canadian epidemic strain of Methicillin resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(2):531–40.

    Article  CAS  PubMed  Google Scholar 

  21. Miragaia M, Couto I, Pereira SF, Kristinsson KG, Westh H, Jarlov JO, Carrico J, Almeida J, Santos Sanches I, De Lencastre H. Molecular characterization of Methicillin resistant Staphylococcus epidermidis clones: evidence of geographic dissemination. J Clin Microbiol. 2002;40:430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duarte Oliveira C, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in Methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):2155–61.

    Article  PubMed  Google Scholar 

  23. Pitout JDD, Nordmann P, Laupland KB, Poirel L. Emergence of enterobacteriaceae producing extended-spectrum beta lactamases (ESBLs) in the community. J Antimicrobiol Chemother. 2005;56:52–9.

    Article  CAS  Google Scholar 

  24. Nashwan al Naiemi, Birgitta Duim, Aldert Bart. A CTX-M extended spectrum beta lactamases in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J Med Microbiol. 55: 1607–1608.

  25. Polotto M, Casella T, de Lucca Oliveira MG, Rubio FG, Mauricio L, et al. Detection of P.aeruginosa harboring bla CTX-M-2 , bla GES-1 and bla GES-5 , bla IMP-1 and bla SPM-1 causing infections in brazilian tertiary care hospital. BMC Infect Dis. 2012;12:176.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Farshadzadeh Z, Khosravi AD, Alavi SM, Parhizgari N, Hoveizavi H. Spread of extended-spectrum β-lactamase genes of bla OXA-10 , bla PER-1 and bla CTX-M in Pseudomonas aeruginosa strains isolated from burn patients. Burns. 2014;40(8):1575–80.

    Article  PubMed  Google Scholar 

  27. Relman DA, Schmidt TM, Mac Dermott RP, Falkow S. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med. 1992;327:293–301.

    Article  CAS  PubMed  Google Scholar 

  28. Santos Sanches I, Mato R, de Lencastre H, Tomasz A, Nunes S, Alves CR, et al. Patterns of multidrug resistance among Methicillin-resistant hospital isolates of coagulase positive and coagulase negative Staphylococci collected in the international multicenter study resist in 1997 and 1998. Microb Drug Res. 2000;6:199–211.

    Article  CAS  Google Scholar 

  29. Otto M. Staphylococcus epidermidis - the accidental pathogen. Nat Rev Microbiol. 2009;7:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kandemir O, Akbay Sahin E, Millan A, Gen R. Risk factor for infection of the diabetic foot with multi-antibiotic resistant microorganisms. J Inf Secur. 2007;54:439–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorairaj Arvind Prasanth.

Ethics declarations

Funding

None.

Conflict of interest

P. Sugandhi declares that she has no conflict of interest. D. Arvind Prasanth declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugandhi, P., Prasanth, D.A. Emergence of multi drug resistance strains causing diabetic foot infection in Salem, Tamil Nadu, India. Int J Diabetes Dev Ctries 38, 100–107 (2018). https://doi.org/10.1007/s13410-017-0555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-017-0555-4

Keywords

Navigation