Skip to main content

Advertisement

Log in

Phylogenetic and promoter analysis of islet amyloid polypeptide gene causing type 2 diabetes in mammalian species

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Mutation in islet amyloid polypeptide (IAPP) gene results into its protein misfolding and fibril formation. Isolation of various mammalian species shows its conservation from 89- to 93-amino acid sequence sharing homology with cats, rats, mice, and guinea pigs. For the present study, detailed phylogenetic analysis is carried out for the upstream promoter region of IAPP gene, IAPP messenger RNA (mRNA), and proIAPP protein of nine mammalian species. Sequence analysis has shown partial conservation among the rodent species and the canidae group; however, the primate group species has shown maximum conservation of all sequences under considerations with respect to the human IAPP sequences. Our novel approach of analyzing mRNA and protein sequence conservation of proIAPP delineates the importance for developing IAPP models in closely related species sharing a common ancestor with the time divergence. Further, transcription factor binding sites were critically analyzed for the upstream promoter region of the IAPP gene. These probable binding sites were predicted for DNA motifs recognized by transcription factors, which may prove to be helpful in predicting the regulatory mechanism in understanding the regulation of IAPP gene under in vitro or in vivo conditions. Therefore, confirming the co-evolutionary relationship of IAPP among different species will help us guide in studying transcription factor binding site for poorly studied IAPP gene and targeting disease mutation initiating pancreatic amyloidosis in clinical applications. The phylogenetic and gene promoter analysis presented in the paper reveals regulatory elements for beta cell death caused by pancreatic amyloidosis and resulting in type 2 diabetes (T2D) onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rao PV, Lu X, Pattee P, Turner M, Suguna N, Nagalla SR. Gene expression profiles of peripheral blood cells in type 2 diabetes and nephropathy in Asian Indians. Genome Biol. 2004;5:P9.

    Article  Google Scholar 

  2. Westermark P, Wernstedt C, Wilander E, Sletten K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun. 1986;140:827–31.

    Article  CAS  PubMed  Google Scholar 

  3. Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. J Proc Natl Acad Sci USA. 1987;84:3881–5.

    Article  CAS  Google Scholar 

  4. Khemte’mourian L, Killian JA, Ho¨ppener, JWM, Engel MFM. Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β cell death in type 2 diabetes mellitus. Exp. Diabetes Res. 2008, 421287.

  5. Fawver JN, Ghiwot Y, Koola C, Carrera W, Rodriguez-Rivera J, Hernandez C, et al. Islet amyloid polypeptide (IAPP): a second amyloid in Alzheimer’s disease. Curr Alzheimer Res. 2014;11(10):928–40.

    Article  CAS  PubMed  Google Scholar 

  6. Westermark P, Grimelius L, Polak JM, Larsson LI, Van Noorden S, Wilander E, et al. Amyloid in polypeptide hormone-producing tumors. G E Lab Investig. 1977;37:212–5.

    CAS  Google Scholar 

  7. Nishi M, Chan SJ, Nagamatsu S, Bell GI, Steiner DF. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. J Proc Nat Acad of Sci. 1989;86(15):5738–42.

    Article  CAS  Google Scholar 

  8. Kahn SE, D’Alessio DA, Schwartz MW, Fujimoto WY, Ensinck JW, Taborsky Jr GJ, et al. Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes. 1990;39:634–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sanke T, Bell GI, Sample C, Rubenstein AH, Steiner DF. An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J Bio Chem. 1988;263(33):17243–6.

    CAS  Google Scholar 

  10. Kowalchuk JM, Howland K, Rothbard JB, Willis AC, Reid KB. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. J Proc Natl Acad Sci USA. 1988;85:7763–6.

    Article  Google Scholar 

  11. Arnelo U, Permert J, Larsson J, Reidelberger RD, Arnelo C, Adrian TE. Chronic low dose islet amyloid polypeptide infusion reduces food intake, but does not influence glucose metabolism, in unrestrained conscious rats: studies using a novel aortic catheterization technique. Endocrin. 1997;138:4081–5.

    CAS  Google Scholar 

  12. Rushing PA, Hagan MM, Seeley RJ, Lutz TA, Woods SC. Amylin a novel action in the brain to reduce body weight. Endocrin. 2000;141:850–3.

    CAS  Google Scholar 

  13. O’Brien TD, Butler PC, Kreutter DK, Kane LA, Eberhardt NL. Human islet amyloid polypeptide expression in COS-1 cells. A model of intracellular amyloidogenesis. J Am Pathol. 1995;147(3):609–16.

    Google Scholar 

  14. Hiddinga HJ, Eberhardt NL. Intracellular amyloidogenesis by human islet amyloid polypeptide induces apoptosis in COS-1 cells. J Am Pathol. 1999;154(4):1077–88.

    Article  CAS  Google Scholar 

  15. Zhao H, Lai F, Tong P, Zhong D, Yang D, et al. Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. Diabetes. 2003;52:2759–66.

    Article  CAS  PubMed  Google Scholar 

  16. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Westermark P, Engstrèom U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide pinpointing amino acid residues linked to amyloid fibril formation. J Proc Natl Acad Sci U S A. 1990;87(13):5036–40.

    Article  CAS  Google Scholar 

  18. King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166(3):877–94. doi:10.1111/j.1476-5381.2012.01911.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Health. 2016 Apr 27.

  20. Vandamme TF. Use of rodents as models of human diseases. J Pharm Bioallied Sci. 2014;6(1):2–9. doi:10.4103/0975-7406.124301.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olson LE, Roper RJ, Baxter LL, Carlson EJ, Epstein CJ, Reeves RH. Down syndrome mouse models Ts65Dn, Ts1Cje, and Ms1Cje/Ts65Dn exhibit variable severity of cerebellar phenotypes. Dev Dyn. 2004;230(3):581–9.

    Article  CAS  PubMed  Google Scholar 

  22. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, et al. Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros. 2011;10 Suppl 2:S152–71. doi:10.1016/S1569-1993(11)60020-9.

    Article  CAS  PubMed  Google Scholar 

  23. Watada H, Kajimoto Y, Kaneto H, Matsuoka TA, Fujitan Y, Miyazaki JI, et al. Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun. 1996;229(3):746–51.

    Article  CAS  PubMed  Google Scholar 

  24. Macfarlane WM, Campbell SC, Elrick LJ, Oates V, Bermano G, Lindley KJ, et al. Glucose regulates islet amyloid polypeptide gene transcription in a PDX1-and calcium-dependent manner. J Biol Chem. 2000;275(20):15330–5.

    Article  CAS  PubMed  Google Scholar 

  25. Campbell SC, Cragg H, Elrick LJ, Macfarlane WM, Shennan KI, Docherty K. Inhibitory effect of Pax4 on the human insulin and islet amyloid polypeptide (IAPP) promoters. FEBS Lett. 1999;463(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  26. Carty MD, Lillquist JS, Peshavaria M, Stein R, Soeller WC. Identification of cis- and trans-active factors regulating human islet amyloid polypeptide gene expression in pancreatic β-cells. J Biol Chem. 1997;272(18):11986–93.

    Article  CAS  PubMed  Google Scholar 

  27. Shepherd LM, Campbell SC, Macfarlane WM. Transcriptional regulation of the IAPP gene in pancreatic β-cells. J Biochem Biophys Acta (BBA) -Gene Struct Expr. 2004;1681(1):28–37.

    CAS  Google Scholar 

  28. Novials A, Mato E, Lucas M, Franco C, Rivas M, Santisteban P, et al. Mutation at position −132 in the islet amyloid polypeptide (IAPP) gene promoter enhances basal transcriptional activity through a new CRE-like binding site. Diabetologia. 2004;47(7):1167–74.

    Article  CAS  PubMed  Google Scholar 

  29. Christmanson L, Rorsman F, Stenman G, Westermark P, Betsholtz C. The human islet amyloid polypeptide (IAPP) gene: organization, chromosomal localization and functional identification of a promoter region. FEBS Lett. 1990;267(1):160–6.

    Article  CAS  PubMed  Google Scholar 

  30. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saitou N, Nei M. The neighbor-joining method a new method for reconstructing phylogenetic trees. J Mol Biol Evol. 1987;4:406–25.

    CAS  Google Scholar 

  33. Zuckerkandl E, Pauling L. Evolutionary divergence andconvergence in proteins. In: Bryson V, Vogel HJ, editors. Evolving genes and proteins. New York: Academic Press; 1965. p. 97–166.

  34. Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM. rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res. 2002;12:832–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mrowka R, Steinhage K, Patzak A, Persson PB. An evolutionary approach for identifying potential transcription factor binding sites: the renin gene as an example. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1147–50.

    Article  CAS  PubMed  Google Scholar 

  36. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. J Comput Appl Biosci. 1992;8(3):275–82.

    CAS  Google Scholar 

  37. Melloul D, Marshak S, Cerasi E. Regulation of insulin gene transcription. Diabetologia. 2002;45(3):309–26.

    Article  CAS  PubMed  Google Scholar 

  38. Sayo Y, Hosokawa H, Imachi H, Murao K, Sato M, Wong NC, et al. Transforming growth factor β induction of insulin gene expression is mediated by pancreatic and duodenal homeobox gene‐1 in rat insulinoma cells. J Eur Biochem. 2000;267(4):971–8.

    Article  CAS  Google Scholar 

  39. Wang L, Wang X, Adamo ML. Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin-like growth factor I gene regulate basal promoter activity 1. Endocrinology. 2000;141(3):1118–26.

    CAS  PubMed  Google Scholar 

  40. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. J Nat. 2001;414:799–806.

    Article  CAS  Google Scholar 

  41. Manyes L, Arribas, Gomez M, Calzada CN, Fernandez-Medarde A, Santos E. Transcriptional profiling reveals functional links between RasGrf1 and Pttg1 in pancreatic beta cells. BMC Genomics. 2014;15(1):1019–39.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kapasa M, Vlachakis D, Kostadima M, Sotiropoulou G, Kossida S. Towards the elucidation of the regulatory network guiding the insulin producing cells’ differentiation. Genomics. 2012;100(4):212–21.

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A. 2002;99(12):8078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. German MS, Wang J. The insulin gene contains multiple transcriptional elements that respond to glucose. Mol Cell Biol. 1994;14(6):4067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hay CW, Docherty K. Comparative analysis of insulin gene promoters: implications for diabetes research. Diabetes. 2006;55(12):3201–13.

    Article  CAS  PubMed  Google Scholar 

  46. Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, et al. Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes. 2011;60(11):2861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McDonald E, Krishnamurthy M, Goodyer CG, Wang R. The emerging role of SOX transcription factors in pancreatic endocrine cell development and function. Stem Cells Dev. 2009;18(10):1379–88.

    Article  CAS  PubMed  Google Scholar 

  48. Qiu Y, Sharma A, Stein R. p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol Cell Biol. 1998;18(5):2957–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L. Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology. 2010;138(7):2233–45.

    Article  CAS  PubMed  Google Scholar 

  50. Scassa ME, Guberman AS, Ceruti JM, Cánepa ET. Hepatic nuclear factor 3 and nuclear factor 1 regulate 5-aminolevulinate synthase gene expression and are involved in insulin repression. J Biol Chem. 2004;279(27):28082–92.

    Article  CAS  PubMed  Google Scholar 

  51. Baumeister H, Meyerhof W. The POU domain transcription factor Tst-1 activates somatostatin receptor 1 gene expression in pancreatic β-cells. J Biol Chem. 2000;275(37):28882–7.

    Article  CAS  PubMed  Google Scholar 

  52. Sarkar A, Zhang M, Liu SH, Sarkar S, Brunicardi FC, Berger DH, et al. Serum response factor expression is enriched in pancreatic β cells and regulates insulin gene expression. FASEB J. 2011;25(8):2592–603.

    Article  CAS  PubMed  Google Scholar 

  53. Shih DQ, Screenan S, Munoz KN, Philipson L, Pontoglio M, Yaniv M, et al. Loss of HNF-1α function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes. 2001;50(11):2472–80.

    Article  CAS  PubMed  Google Scholar 

  54. Kumar M, Jordan N, Melton D, Grapin-Botton A. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol. 2003;259(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  55. Fajas L, Annicotte JS, Miard S, Sarruf D, Watanabe M, Auwerx J. Impaired pancreatic growth, β cell mass, and β cell function in E2F1−/−mice. J Clin Investig. 2004;113(9):1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakabayashi H, Ohta Y, Yamamoto M, Susuki Y, Taguchi A, Tanabe K, et al. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells. Biochem Biophys Res Commun. 2013;434(2):370–5.

    Article  CAS  PubMed  Google Scholar 

  57. Lehto M, Bitzen PO, Isomaa B, Wipemo C, Wessman Y, Forsblom C, et al. Mutation in the HNF-4 gene affects insulin secretion and triglyceride metabolism. Diabetes-N Y. 1999;48:423–5.

    Article  CAS  Google Scholar 

  58. Gray S, Pandha HS, Michael A, Middleton G, Morgan R. HOX genes in pancreatic development and cancer. JOP. 2011;12(3):216–9.

    PubMed  Google Scholar 

  59. Shi Q, Le X, Abbruzzese JL, Wang B, Mujaida N, Matsushima K, et al. Cooperation between transcription factor AP-1 and NF-kappa B in the induction of interleukin-8 in human pancreatic adenocarcinoma cells by hypoxia. J Interf Cytokine Res. 1999;19(12):1363–71.

    Article  CAS  Google Scholar 

  60. Chakrabarti SK, Mirmira RG. Transcription factors direct the development and function of pancreatic β cells. J Trends Endocrinol Metab. 2003;14(2):78–84.

    Article  CAS  Google Scholar 

  61. Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic β-cells. J Biol Chem. 1999;274(2):1011–6.

    Article  CAS  PubMed  Google Scholar 

  62. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363(9414):1049–57.

    Article  CAS  PubMed  Google Scholar 

  63. Cowie P, Ross R, MacKenzie A. Understanding the dynamics of gene regulatory systems; characterisation and clinical relevance of cis-regulatory polymorphisms. Biol (Basel). 2013;2(1):64–84. doi:10.3390/biology2010064.

    CAS  Google Scholar 

  64. Brender JR, Salamekh S, Ramamoorthy A. Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc Chem Res. 2012;45(3):454–62.

    Article  CAS  PubMed  Google Scholar 

  65. Dermitzakis ET, Clark AG. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol. 2002;19:1114–21.

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Chen CY, Kaye AM, Wasserman WW. The identification of cis-regulatory elements: a review from a machine learning perspective. Biosystems. 2015;138:6–17. doi:10.1016/j.biosystems.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  67. Seufert J, Weir GC, Habener JF. Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein beta and transactivator islet duodenum homeobox-1 in rat pancreatic beta cells during the development of diabetes mellitus. J Clin Investig. 1998;101(11):2528–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ho¨ppener, J. W. M.; Jacobs, H. M.; Wierup, N.; Sotthewes, G.; Sprong, M.; de Vos, P.; Berger, R.; Sundler, F.; Ahre’n, B. Human islet amyloid polypeptide transgenic mice: in vivo and ex vivo models for the role of hIAPP in type 2 diabetes mellitus. Exp. Diabetes Res. 2008, 697035.

  69. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4):347–55. doi:10.1038/nbt.2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Saluja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

The authors declare that the study is not funded by any external agency/organization. The study is carried out at the School of Health Sciences and Chitkara University Research and Innovation Network, which are the internal departments of organization Chitkara University, Punjab, India.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Saluja, N. Phylogenetic and promoter analysis of islet amyloid polypeptide gene causing type 2 diabetes in mammalian species. Int J Diabetes Dev Ctries 36, 477–489 (2016). https://doi.org/10.1007/s13410-016-0508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-016-0508-3

Keywords

Navigation