Skip to main content

Advertisement

Log in

Exploring the Genomic Roadmap and Molecular Phylogenetics Associated with MODY Cascades Using Computational Biology

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Maturity onset diabetes of the young (MODY) is a metabolic and genetic disorder. It is different from type 1 and type 2 diabetes with low occurrence level (1–2 %) among all diabetes. This disorder is a consequence of β-cell dysfunction. Till date, 11 subtypes of MODY have been identified, and all of them can cause gene mutations. However, very little is known about the gene mapping, molecular phylogenetics, and co-expression among MODY genes and networking between cascades. This study has used latest servers and software such as VarioWatch, ClustalW, MUSCLE, G Blocks, Phylogeny.fr, iTOL, WebLogo, STRING, and KEGG PATHWAY to perform comprehensive analyses of gene mapping, multiple sequences alignment, molecular phylogenetics, protein–protein network design, co-expression analysis of MODY genes, and pathway development. The MODY genes are located in chromosomes-2, 7, 8, 9, 11, 12, 13, 17, and 20. Highly aligned block shows Pro, Gly, Leu, Arg, and Pro residues are highly aligned in the positions of 296, 386, 437, 455, 456 and 598, respectively. Alignment scores inform us that HNF1A and HNF1B proteins have shown high sequence similarity among MODY proteins. Protein–protein network design shows that HNF1A, HNF1B, HNF4A, NEUROD1, PDX1, PAX4, INS, and GCK are strongly connected, and the co-expression analyses between MODY genes also show distinct association between HNF1A and HNF4A genes. This study has used latest tools of bioinformatics to develop a rapid method to assess the evolutionary relationship, the network development, and the associations among eleven MODY genes and cascades. The prediction of sequence conservation, molecular phylogenetics, protein–protein network and the association between the MODY cascades enhances opportunities to get more insights into the less-known MODY disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. American Diabetes Association. (2013). Diagnosis and classification of diabetes mellitus. Diabetes Care, 36, S67–S74.

    Article  PubMed Central  Google Scholar 

  2. Pradhan, A. (2007). Obesity, metabolic syndrome, and type 2 diabetes: inflammatory basis of glucose metabolic disorders. Nutrition Reviews, 65, S152–S156.

    Article  PubMed  Google Scholar 

  3. Tattersall, R. B. (1974). Mild familial diabetes with dominant inheritance. Q J Med., 43, 339–357.

    CAS  PubMed  Google Scholar 

  4. Tattersall, R. B., & Fajans, S. S. (1975). A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes, 24(1), 44–53.

    Article  CAS  PubMed  Google Scholar 

  5. Gardner, D. S., & Tai, E. S. (2012). Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes, 5, 101–108.

    Article  PubMed Central  PubMed  Google Scholar 

  6. American Diabetes Association. (2011). Diagnosis and classification of diabetes mellitus. Diabetes Care, 33, S62–S69.

    Article  Google Scholar 

  7. Hattersley, A., Bruining, J., Shield, J., Njolstad, P., & Donaghue, K. C. (2009). The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes, 10, 33–42.

    Article  PubMed  Google Scholar 

  8. Molven, A., & Njølstad, P. R. (2011). Role of molecular genetics in transforming diagnosis of diabetes mellitus. Expert Rev Mol Diagn, 11, 313–320.

    CAS  PubMed  Google Scholar 

  9. Fajans, S. S., Bell, G. I., & Polonsky, K. S. (2001). Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. New England Journal of Medicine, 345, 971–980.

    Article  CAS  PubMed  Google Scholar 

  10. Kropff, J., Selwood, M. P., McCarthy, M. I., Farmer, A. J., & Owen, K. R. (2011). Prevalence of monogenic diabetes in young adults: a community-based, cross-sectional study in Oxfordshire, UK. Diabetologia, 54, 1261–1263.

    Article  CAS  PubMed  Google Scholar 

  11. Shields, B. M., Hicks, S., Shepherd, M. H., Colclough, K., Hattersley, A. T., et al. (2010). Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia, 53, 2504–2508.

    Article  CAS  PubMed  Google Scholar 

  12.  Yamagata K, Furuta H, Oda N, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1) Nature. 384:458–460.

  13. Yamagata, K., Oda, N., Kaisaki, P. J., et al. (1996). Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature, 384, 455–458.

    Article  CAS  PubMed  Google Scholar 

  14. Vionnet, N., Stoffel, M., Takeda, J., et al. (1992). Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature, 356, 721–722.

    Article  CAS  PubMed  Google Scholar 

  15. Horikawa, Y., Iwasaki, N., Hara, M., et al. (1997). Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nature Genetics, 17, 384–385.

    Article  CAS  PubMed  Google Scholar 

  16. Stoffers, D. A., Ferrer, J., Clarke, W. L., & Habener, J. F. (1997). Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nature Genetics, 17, 138–139.

    Article  CAS  PubMed  Google Scholar 

  17. Kyithar, M. P., Bacon, S., Pannu, K. K., Rizvi, S. R., Colclough, K., Ellard, S., et al. (2011). Identification of HNF1A-MODY and HNF4A-MODY in Irish families: Phenotypic characteristics and therapeutic implications. Diabetes & Metabolism, 37(6), 512–519.

    Article  CAS  Google Scholar 

  18. Negahdar, M., Aukrust, I., Johansson, B. B., Molnes, J., Molven, A., Matschinsky, F. M., et al. (2012). GCK-MODY diabetes associated with protein misfolding, cellular self-association and degradation. Biochimica et Biophysica Acta, 1822, 1705–1715.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Thanabalasingham, G., Huffman, J. E., Kattla, J. J., Novokmet, M., Rudan, I., et al. (2013). Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes, 62(4), 1329–1337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yamagata, K., Furuta, H., Oda, N., Kaisaki, P. J., Menzel, S., et al. (1996). Mutations in the hepatocyte nuclear factor-4[alpha] gene in maturity-onset diabetes of the young (MODY1). Nature, 384, 458–460.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, B. T., Dayeh, T. A., Volkov, P. A., Kirkpatrick, C. L., Malmgren, S., Jing, X., et al. (2012). Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Molecular Endocrinology, 26, 1203–1212.

    Article  CAS  PubMed  Google Scholar 

  22. Haumaitre, C., Fabre, M., Cormier, S., Baumann, C., Delezoide, A. L., & Cereghini, S. (2006). Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Human Molecular Genetics, 5, 2363–2375.

    Article  Google Scholar 

  23. Copeman, J. B., Cucca, F., Hearne, C. M., et al. (1995). Linkage disequilibrium mapping of a type 1 diabetes susceptibility gene (IDDM7) to chromosome 2q31–q33. Nature Genetics, 9, 80–85.

    Article  CAS  PubMed  Google Scholar 

  24. Neve, B., Fernandez-Zapico, M. E., Ashkenazi-Katalan, V., et al. (2005). Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proceedings of the National Academy of Sciences of the United States of America, 102, 4807–4812.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Raeder, H., Johansson, S., Holm, P. I., et al. (2006). Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nature Genetics, 38, 54–62.

    Article  CAS  PubMed  Google Scholar 

  26. Kooptiwut, S., Plengvidhya, N., Chukijrungroat, T., Sujjitjoon, J., Semprasert, N., Furuta, H., et al. (2012). Defective PAX4 R192H transcriptional repressor activities associated with maturity onset diabetes of the young and early onset-age of type 2 diabetes. Journal of Diabetes and Its Complications, 26, 343–347.

    Article  PubMed  Google Scholar 

  27. Amara, A., Chadli-Chaieb, M., Ghezaiel, H., Philippe, J., Brahem, R., Dechaume, A., et al. (2012). Familial early-onset diabetes is not a typical MODY in several Tunisian patients. La Tunisie Medicale, 90, 882–887.

    PubMed  Google Scholar 

  28. Borowiec, M., Liew, C. W., Thompson, R., Boonyasrisawat, W., Hu, J., Mlynarski, W. M., et al. (2009). Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 106, 14460–14465.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chin, E. L., da Silva, C., & Hegde, M. (2013). Assessment of clinical analytical sensitivity and specificity of next-generation sequencing for detection of simple and complex mutations. BMC Genetics, 14, 6.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pinsker, W., & Sperlich, D. (1984). Cytogenetic mapping of enzyme loci on chromosomes J and U of Drosophila subobscra. Genetics, 108(4), 913–926.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Zeeberg, B. (2002). Shannon information theoretic computation of synonymous codon usage biases in coding regions of human and mouse genomes. Genome Research, 12, 944–955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tao, X., & Dafu, D. (1998). The relationship between synonymous codon usage and protein structure. FEBS Letters, 434, 93–96.

    Article  CAS  PubMed  Google Scholar 

  33. Wu, D. C., Jackson-Lewis, V., Vila, M., Tieu, K., et al. (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. Journal of Neuroscience, 22, 1763–1771.

    CAS  PubMed  Google Scholar 

  34. Salvi, M., Sarno, S., Cesaro, L., Nakamura, H., & Pinna, L. A. (2009). Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochimica et Biophysica Acta, 1793, 847–859.

    Article  CAS  PubMed  Google Scholar 

  35. Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., et al. (2003). Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Research, 13, 2363–2371.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S. M., et al. (2002). DIP, the Database of Interacting Proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 30, 303–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., et al. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27, 29–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., et al. (2005). Reactome: A knowledgebase of biological pathways. Nucleic Acids Research, 33, 428–432.

    Article  Google Scholar 

  39. Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., et al. (2007). Database Resources of the National Center for Biotechnology Information. Nucleic Acids Research, 35, D5–D12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., et al. (2011). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 39, D38–D51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., et al. (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 31, 365–370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cheng, Y. C., Hsiao, F. C., Yeh, E. C., Lin, W. J., Tang, C. Y., et al. (2012). VarioWatch: Providing large-scale and comprehensive annotations on human genomic variants in the next generation sequencing era. Nucleic Acids Research, 40, W76–W81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Castresana, G., & Talavera, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564–577.

    Article  PubMed  Google Scholar 

  45. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.

    Article  CAS  PubMed  Google Scholar 

  46. Pupko, T., Bell, R. E., Mayrose, I., Glaser, F., & Ben-Tal, N. (2002). Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics, 18, S71–S77.

    Article  PubMed  Google Scholar 

  47. Whelan, S., & Goldman, N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution, 18, 691–699.

    Article  CAS  PubMed  Google Scholar 

  48. Mayrose, I., Graur, D., Ben-Tal, N., & Pupko, T. (2004). Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. Molecular Biology and Evolution, 21, 1781–1791.

    Article  CAS  PubMed  Google Scholar 

  49. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., et al. (2008). Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, W465–W469.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Holmes, S. (2003). Bootstrapping phylogenetic trees: theory and methods. Statistical Science, 18, 241–255.

    Article  Google Scholar 

  51. Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192.

    Article  Google Scholar 

  52. Letunic, I., & Bork, P. (2007). Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 23, 127–128.

    Article  CAS  PubMed  Google Scholar 

  53. Schneider, T. D., & Stephens, R. M. (1990). Sequence logos a new way to display consensus sequences. Nucleic Acids Research, 18, 6097–6100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: A sequence logo generator. Genome Research, 14, 1188–1190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., et al. (2009). STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37, 412–416.

    Article  Google Scholar 

  56. Wrzodek, C., Büchel, F., Ruff, M., Dräger, A., & Zell, A. (2013). Precise generation of systems biology models from KEGG pathways. BMC Systems Biology, 7, 15.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Griffiths, A. J. F., Miller, J. H., Suzuki, D. T., et al. (2000). An introduction to genetic analysis (7th ed.). New York: W. H. Freeman.

    Google Scholar 

  58. Vaxillaire, M., Boccio, V., Philippi, A., Vigouroux, C., Terwilliger, J., et al. (1995). A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nature Genetics, 9, 418–423.

    Article  CAS  PubMed  Google Scholar 

  59. Kim, S. H., Ma, X., Weremowicz, S., Ercolino, T., Powers, C., et al. (2004). Identification of a locus for maturity-onset diabetes of the young on chromosome 8p23. Diabetes, 53(5), 1375–1384.

    Article  CAS  PubMed  Google Scholar 

  60. Rothschild, C. B., Akots, G., Hayworth, R., Pettenati, M. J., Rao, P. N., et al. (1993). A genetic map of chromosome 20q12-q13.1: Multiple highly polymorphic microsatellite and RFLP markers linked to the maturity-onset diabetes of the young (MODY) locus. American Journal of Human Genetics, 52(1), 110–123.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Lipman, D. J., Altschul, S. F., & Kececioglu, J. D. (1989). A tool for multiple sequence alignment. Proceedings of the National Academy of Sciences of the United States of America, 86, 4412–4415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Galán, M., Vincent, O., Roncero, I., Azriel, S., Boix-Pallares, P., et al. (2006). Effects of novel maturity-onset diabetes of the young (MODY)-associated mutations on glucokinase activity and protein stability. Biochemical Journal, 393, 389–396.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Deane, C. M., & Lummis, S. C. (2001). The role and predicted propensity of conserved proline residues in the 5-HT3 receptor. Journal of Biological Chemistry, 276, 37962–37966.

    CAS  PubMed  Google Scholar 

  64. Chakraborty, C., Roy, S. S., Hsu, M. J., & Agoramoorthy, G. (2012). Can computational biology improve the phylogenetic analysis of insulin? Computer Methods and Programs in Biomedicine, 108, 860–872.

    Article  PubMed  Google Scholar 

  65. Harries, L. W., Brown, J. E., & Gloyn, A. L. (2009). Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes. PLoS One, 4(11), e7855.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Chakraborty, C., George Priya Doss, C., Sharma, R., Sahana, S., & Nair, T. S. (2013). Does computational biology help us to understand the molecular phylogenetics and evolution of cluster of differentiation (CD) proteins? Protein Journal, 32, 143–154.

    Article  CAS  PubMed  Google Scholar 

  67. Chakraborty, C., Roy, S. S., Hsu, M. J., & Agoramoorthy, G. (2011). Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: A network-based protein–protein interaction analysis. PLoS One, 6, e16388.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Szklarczyk, D., et al. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39(Database issue), D561–D568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mazandu, G. K., & Mulder, N. J. (2011). Scoring protein relationships in functional interaction networks predicted from sequence data. PLoS One, 6, e1860.

    Article  Google Scholar 

  70. Muller, Y. L., Infante, A. M., Hanson, R. L., Love-Gregory, L., Knowler, W., et al. (2005). Variants in hepatocyte nuclear factor 4 are modestly associated with type 2 diabetes in Pima Indians. Diabetes, 54, 3035–3039.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Karim, M. A., Wang, X., Hale, T. C., & Elbein, S. C. (2005). Insulin promoter factor 1 variation is associated with type 2 diabetes in African Americans. BMC Medical Genetics, 6, 37.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Weedon, M. N., Owen, K. R., Shields, B., Hitman, G., Walker, M., et al. (2004). Common variants of the hepatocyte nuclear factor-4 P2 promoter are associated with type 2 diabetes in the U.K. population. Diabetes, 53, 3002–3006.

    Article  CAS  PubMed  Google Scholar 

  73. Butte, A., Tamayo, P., Slonim, D., Golub, T., & Kohane, I. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America, 97, 12182–12186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Zhou, X., Kao, M., & Wong, W. (2002). Transitive functional annotation by shortest path analysis of gene expression data. Proceedings of the National Academy of Sciences of the United States of America, 99, 12783–12788.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Steffen, M., Petti, A., Aach, J., D’haeseleer, P., & Church, G. (2002). Automated modelling of signal transduction networks. BMC Bioinformatics, 3, 34.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Horvath, S., & Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Computational Biology, 4(8), e1000117.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Hegele, R. A. (1997). Small genetic effects in complex diseases: A review of regulatory sequence variants in dyslipoproteinemia and atherosclerosis. Clinical Biochemistry, 30, 183–188.

    Article  CAS  PubMed  Google Scholar 

  78. Knight, J. C. (2005). Regulatory polymorphisms underlying complex disease traits. Journal of Molecular Medicine, 83, 97–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Kir, S., Zhang, Y., Gerard, R. D., Kliewer, S. A., & Mangelsdorf, D. J. (2012). Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. Journal of Biological Chemistry, 287, 41334–41341.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Doss, C. G. P., Chakraboty, C., Syed Haneef, S. A., NagaSundaram, N., Chen, L., & Zhu, H. (2014). Evolution- and structure-based computational strategy reveals the impact of deleterious missense mutations on MODY 2 (maturity-onset diabetes of the young, type 2). Theranostics, 4(4), 366–385.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindasamy Agoramoorthy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, C., Bandyopadhyay, S., Doss, C.G.P. et al. Exploring the Genomic Roadmap and Molecular Phylogenetics Associated with MODY Cascades Using Computational Biology. Cell Biochem Biophys 71, 1491–1502 (2015). https://doi.org/10.1007/s12013-014-0372-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0372-z

Keywords

Navigation