Skip to main content
Log in

Large-Scale Production of Glaciozyma antarctica Antifreeze Protein 1 (Afp1) by Fed-Batch Fermentation of Pichia pastoris

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Antifreeze proteins (AFPs) are unique proteins that have an affinity toward ice. Due to their potential applications in the food and medical industries, many attempts have been made to produce AFPs in large quantities. In this study, recombinant Afp1 from Glaciozyma antarctica, a psychrophilic yeast, was overexpressed in a methylotrophic yeast, Pichia pastoris, followed by 5-L fermenter expression. The highest yield of Afp obtained from the fermentation was 39.5 mg/L when the cells were cultivated at \(16\,{^{\circ }}\hbox {C}\) and at pH 5.0. Afp1 was produced as a glycoprotein (\(\sim \)55 kDa) based on gel staining using a glycoprotein kit. Antifreeze activities of the recombinant Afp1 were exhibited through thermal hysteresis (TH) and recrystallization inhibition (RI) where the highest TH value recorded was at \({\sim }0.5\,{^{\circ }}\hbox {C}\) at 10 mg/mL. This value is higher when compared to the recombinant Afp1 produced in Escherichia coli (\(0.08\,{^{\circ }}\hbox {C}\)) as well as the native antifreeze protein from G. antarctica (\(0.1\,{^{\circ }}\hbox {C}\)). Both TH and RI activities increased when higher protein concentrations were used. Effects of temperature on stability showed that Afp1 had lost its activity after being incubated at a temperature higher than \(20\,{^{\circ }}\hbox {C}\). The cryoprotective effects of Afp1 on cellulases showed that the treated cellulase retained up to \(\sim \)20% of its activity following several cycles of freeze–thawing. This indicates that Afp1 might act as a cryoprotective agent and has the potential for use in biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, J.; Lee, S.; Do, H.; Park, J.; Kim, E.; Choe, Y.-H.; Han, S.J.; Hak, J.K.: Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl. Microbiol. Biotechnol. 97(8), 3383–93 (2013)

    Article  Google Scholar 

  2. Graham, L.A.; Liou, Y.-C.; Walker, V.K.; Davies, P.L.: Hyperactive antifreeze protein from beetles. Nature 388(6644), 727–728 (1997)

    Article  Google Scholar 

  3. Yu, X.-M.; Griffith, M.: Antifreeze proteins in winter rye leaves form oligomeric complexes. Plant Physiol. 119(4), 1361–1370 (1999)

    Article  Google Scholar 

  4. Fletcher, G.L.; Hew, C.L.; Davies, P.L.: Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63(1), 359–390 (1999)

    Article  Google Scholar 

  5. Hashim, N.H.F.; Sulaiman, S.; Bakar, F.D.A.; Illias, R.M.; Kawahara, H.; Najimudin, N.; Mahadi, N.M.; Murad, A.M.A.: Molecular cloning, expression and characterisation of Afp4, an antifreeze protein from Glaciozyma antarctica. Polar Biol. 37, 1495–1505 (2014)

    Article  Google Scholar 

  6. Gilbert, J.A.; Davies, P.L.; Laybourn-Parry, J.: A hyperactive, Ca\(^{2+}\)-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol. Lett. 245(1), 67–72 (2005)

    Article  Google Scholar 

  7. Kawahara, H.; Iwanaka, Y.; Higa, S.; Muryoi, N.; Sato, M.; Honda, M.; Omura, H.; Obata, H.: A novel, intracellular antifreeze protein in an antarctic bacterium. Flavobacterium xanthum. Cryoletters 28(1), 39–49 (2007)

    Google Scholar 

  8. Uhlig, C.; Kabisch, J.; Palm, G.J.; Valentin, K.; Schweder, T.; Krell, A.: Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae). Cryobiology 63(3), 220–228 (2011)

    Article  Google Scholar 

  9. Barrett, J.: Thermal hysteresis proteins. Int. J. Biochem. Cell. Biol. 33(2), 105–117 (2001)

    Article  Google Scholar 

  10. Scotter, A.J.; Marshall, C.B.; Graham, L.A.; Gilbert, J.A.; Garnham, C.P.; Davies, P.L.: The basis for hyperactivity of antifreeze proteins. Cryobiology 53(2), 229–239 (2006)

    Article  Google Scholar 

  11. Bar-Dolev, M.; Celik, Y.; Wettlaufer, J.S.; Davies, P.L.; Braslavsky, I.: New insights into ice growth and melting modifications by antifreeze proteins. J. R. Soc. Interface. 9(77), 3249–59 (2012)

    Article  Google Scholar 

  12. Venketesh, S.; Dayananda, C.: Properties, potentials, and prospects of antifreeze proteins. Crit. Rev. Biotechnol. 28(1), 57–82 (2008)

    Article  Google Scholar 

  13. Christner, B.: Bioprospecting for microbial products that affect ice crystal formation and growth. Appl. Microbiol. Biotechnol. 85(3), 481–489 (2010)

    Article  Google Scholar 

  14. Griffith, M.; Ewart, K.V.: Antifreeze proteins and their potential use in frozen foods. Biotechnol. Adv. 13(3), 375–402 (2005)

    Article  Google Scholar 

  15. Regand, A.; Goff, H.D.: Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J. Dairy. Sci. 89(1), 49–57 (2006)

    Article  Google Scholar 

  16. Zhang, C.; Zhang, H.; Wang, L.: Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food. Res. Int 40(6), 763–769 (2007)

    Article  Google Scholar 

  17. Wang, J.-H.: A comprehensive evaluation of the effects and mechanisms of antifreeze proteins during low-temperature preservation. Cryobiology 41(1), 1–9 (2000)

    Article  MathSciNet  Google Scholar 

  18. Hays, L.M.; Feeney, R.E.; Crowe, L.M.; Crowe, J.H.; Oliver, A.E.: Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. PNAS 93(13), 6835–6840 (1996)

    Article  Google Scholar 

  19. Amir, G.; Rubinsky, B.; Kassif, Y.; Horowitz, L.; Smolinsky, A.K.; Lavee, J.: Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins–an electron microscopy study. Eur. J. Cardiothorac. Surg. 24(2), 292–297 (2003)

    Article  Google Scholar 

  20. Lee, J.K.; Park, K.S.; Park, S.; Park, H.; Song, Y.H.; Kang, S.-H.; Kim, H.J.: An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60(2), 222–228 (2012)

    Article  Google Scholar 

  21. Loewen, M.C.; Liu, X.; Davies, P.L.; Daugulis, A.J.: Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris. Appl. Microbiol. Biotechnol. 48(4), 480–486 (1997)

    Article  Google Scholar 

  22. Hashim, N.; Bharudin, I.; Nguong, D.; Higa, S.; Abu Bakar, F.D.; Nathan, S.; Rabu, A.; Kawahara, H.; Illias, R.M.; Najimudin, N.; Mahadi, N.M.; Murad, A.M.: Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17(1), 63–73 (2013)

    Article  Google Scholar 

  23. Bradford, M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  24. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970)

    Article  Google Scholar 

  25. Quay, D.; Abu Bakar, F.D.; Rabu, A.; Said, M.; Illias, R.; Mahadi, N.; Murad, A.M.: Over expression, purification and characterization of the Aspergillus niger endoglucanase, EglA, in Pichia pastoris. Afr. J. Biotechnol. 10, 2101–2111 (2011)

    Google Scholar 

  26. Kamaruddin, S.; Abu Bakar, F.D.; Illias, R.M.; Said, M.; Hassan, O.; Murad, A.M.A.: Overexpression, purification and characterization of Aspergillus niger beta-glucosidase in Pichia pastoris. Malays. Appl. Biol. 44(1), 7–11 (2013)

    Google Scholar 

  27. Qin, Y.; Wei, X.; Liu, X.; Wang, T.; Qu, Y.: Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expr. Purif. 58(1), 162–167 (2008)

    Article  Google Scholar 

  28. Duman, J.G.; Miele, R.G.; Liang, H.; Grella, D.K.; Sim, K.L.; Castellino, F.J.; Bretthauer, R.K.: O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol. Appl. Biochem. 28(1), 39–45 (1998)

    Google Scholar 

  29. Li, P.; Anumanthan, A.; Gao, X.-G.; Ilangovan, K.; Suzara, V.; Düzgüneş, N.; Renugopalakrishnan, V.: Expression of recombinant proteins in Pichia pastoris. Appl. Biochem. Biotechnol. 142(2), 105–124 (2007)

    Article  Google Scholar 

  30. Li, Z.; Xiong, F.; Lin, Q.; d’Anjou, M.; Daugulis, A.J.; Yang, D.S.; Hew, C.L.: Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr. Purif. 21(3), 438–445 (2001)

    Article  Google Scholar 

  31. Xiao, N.; Suzuki, K.; Nishimiya, Y.; Kondo, H.; Miura, A.; Tsuda, S.; Hoshino, T.: Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J. 277(2), 394–403 (2010)

    Article  Google Scholar 

  32. Park, K.S.; Do, H.; Lee, J.H.; Park, S.I.; Kim, E.J.; Kim, S.-J.; Kang, S.H.; Kim, H.J.: Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64(3), 286–296 (2012)

    Article  Google Scholar 

  33. Yeh, Y.; Feeney, R.E.: Antifreeze proteins: structure and mechanism of function. Chem. Rev. 96, 601–617 (1996)

    Article  Google Scholar 

  34. Kim, H.J.; Shim, H.E.; Lee, J.H.; Kang, Y.C.; Hur, Y.B.: Ice-binding protein derived from Glaciozyma can improve the viability of cryopreserved mammalian cells. J. Microbiol. Biotech. 25(12), 1989–1996 (2015)

    Article  Google Scholar 

  35. Cao, E.; Chen, Y.; Cui, Z.; Foster, P.R.: Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnol. Bioeng. 82(6), 684–690 (2003)

    Article  Google Scholar 

  36. Murias, M.; Rachtan, M.; Jodynis-Liebert, J.: Effect of multiple freeze–thaw cycles of cytoplasm samples on the activity of antioxidant enzymes. J. Pharmacol. Toxicol. Methods 52(2), 302–305 (2005)

    Article  Google Scholar 

  37. Wallis, J.G.; Wang, H.; Guerra, D.J.: Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant. Mol. Biol. 35(3), 323–330 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia under the research Grants 08-05-MGI-GMB001 and 07-05-MGI-GMB014. We acknowledge support given by the Australian Antarctic Division and the Malaysian Antarctic Research Program (MARP) of the Academy of Science, Malaysia. We thank Mr Shaman M. Gaspar, Regional Manager at Infors HT, Southeast Asia, for assistance in the fermentation processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Munir Abdul Murad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tab, M.M., Hashim, N.H.F., Najimudin, N. et al. Large-Scale Production of Glaciozyma antarctica Antifreeze Protein 1 (Afp1) by Fed-Batch Fermentation of Pichia pastoris . Arab J Sci Eng 43, 133–141 (2018). https://doi.org/10.1007/s13369-017-2738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2738-1

Keywords

Navigation