Skip to main content

Advertisement

Log in

Enhanced invertase binding from baker’s yeast via cryogels included boronic acids

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Invertase, an industrially significant glycoenzyme, was purified from baker’s yeast using poly (2-Hydroxyethyl methacrylate) [PHema-Pba] cryogels functionalized with boronic acid. At subzero temperatures, PHema-Pba cryogels were synthesized and characterized using swelling tests, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The surface area of the PHema-Pba cryogels was 14 m2/g with a swelling ratio of 88.3% and macroporosity of 72%. The interconnected macropores of PHema-Pba cryogels were shown via scanning electron microscopy. Invertase binding capacity of PHema-Pba cryogel was evaluated by binding studies in different pH, temperature, and interaction time conditions and the maximum Invertase binding of PHema-Pba cryogel was found as 15.2 mg/g. and 23.7 fold Invertase purification was achieved from baker’s yeast using PHema-Pba cryogels. The results show that PHema-Pba cryogels have high Invertase binding capacity and may be used as an alternative method for enzyme purification via boronate affinity systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Aftab A, Khan ZU, Ali S (2021) Production, kinetics and immobilization of microbial invertases for some commercial applications-a review. Int J Biol Biotech 18(2):377–388

    CAS  Google Scholar 

  • Ambreen J, Haleem A, Shah AA, Mushtaq F, Siddiq M, Bhatti MA, Shah Bukhari SNU, Chandio AD, Mahdi WA, Alshehri S (2023) Facile synthesis and fabrication of NIPAM-Based cryogels for environmental remediation. Gels 9(1):64. https://doi.org/10.3390/gels9010064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins P, Atkins PW, de Paula J (2019) Atkins’ physical chemistry. Oxford University Press, England

    Google Scholar 

  • Bakhshpour M, Derazshamshir A, Bereli N, Elkak A, Denizli A (2016) [PHEMA/PEI]–Cu (II) based immobilized metal affinity chromatography cryogels: application on the separation of IgG from human plasma. Mater Sci Eng 61:824–831

    Article  CAS  Google Scholar 

  • Çadırcı M, Şarkaya K, Allı A (2020) Dielectric properties of CdSe quantum dots-loaded cryogel for potential future electronic applications. Mater Sci Semicond Process 119:105269. https://doi.org/10.1016/j.mssp.2020.105269

    Article  CAS  Google Scholar 

  • Çetin K, Perçin I, Denizli F, Denizli A (2017) Tentacle-type immobilized metal affinity cryogel for invertase purification from Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 45(7):1431–1439

    Article  PubMed  Google Scholar 

  • Cokol-Cakmak M, Bakan F, Cetiner S, Cokol M (2018) Diagonal method to measure synergy among any number of drugs. J Vis Exp. https://doi.org/10.3791/57713

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshavath NN, Mukherjee G, Goud VV, Veeranki VD, Sastri CV (2020) Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: interference of furfural and 5-hydroxymethylfurfural. Int J Biol Macromol 156:180–185

    Article  CAS  PubMed  Google Scholar 

  • Ernst O, Zor T (2010) Linearization of the bradford protein assay. J Vis Exp 38:e1918

    Google Scholar 

  • Erzengin M, Baydemir Peşint G, Zenger O, Odabaşı M (2022) Monolithic hydrophobic cryogel columns for protein separation. Polym Bull 79(3):1485–1499

    Article  CAS  Google Scholar 

  • Fioravante IF, Bueno SMA (2022) Performance of polyacrylamide-alginate-based cryogel for IgG purification from bovine serum by IMAC. Process Biochem 118:413–424

    Article  CAS  Google Scholar 

  • Guo PC, Wang Q, Wang Z, Dong Z, He H, Zhao P (2018) Biochemical characterization and functional analysis of invertase Bmsuc1 from silkworm, Bombyx mori. Int J Biol Macromol 107:2334–2341

    Article  CAS  PubMed  Google Scholar 

  • Hage DS, Matsuda R (2015) Affinity chromatography: a historical perspective. Affinity Chromatogr. https://doi.org/10.1007/978-1-4939-2447-9_1

    Article  Google Scholar 

  • Haleem A, Chen S, Pan J, Weidong H (2023a) Gamma radiation induced synthesis of double network hydrophilic cryogels at low pH loaded with AuNPs for fast and efficient degradation of Congo red. J Hazard Mater Adv 10:100299

    Article  CAS  Google Scholar 

  • Haleem A, Pan JM, Shah A, Hussain H, He WD (2023) A systematic review on new advancement and assessment of emerging polymeric cryogels for environmental sustainability and energy production. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2023.123678

    Article  Google Scholar 

  • Hou SC, Zhang DW, Chen J, Guo XX, Haleem A, He WD (2023) Sulfonated PAM/PPy cryogels with lowered evaporation enthalpy for highly efficient photothermal water evaporation. Polymers 15(9):2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klivenko A, Yergaziyeva A, Kudaibergenov S (2016) Gold nanoparticles stabilized by amphoteric cryogel-perspective flow-through catalytic reactor for oxidation and reduction processes. 2016 Int Conf Nanomater. https://doi.org/10.1109/nap.2016.7757304

    Article  Google Scholar 

  • Li Q, Lü C, Li H, Liu Y, Wang H, Wang X, Liu Z (2012) Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J Chromatogr A 1256:114–120. https://doi.org/10.1016/j.chroma.2012.07.063

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lu Y, Liu Z (2012) Restricted access boronate affinity porous monolith as a protein A mimetic for the specific capture of immunoglobulin G. Chem Sci 3(5):1467–1471

    Article  CAS  Google Scholar 

  • Lozinsky VI (2018) Cryostructuring of polymeric systems. 50. Cryogels and cryotropic gel-formation: terms and definitions. Gels 4(3):77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoochehri H, Hosseini NF, Saidijam M, Taheri M, Rezaee H, Nouri F (2020) A review on invertase: its potentials and applications. Biocatal Agric Biotechnol 25:101599

    Article  Google Scholar 

  • Nontipichet N, Khumngern S, Choosang J (2021) An enzymatic histamine biosensor based on a screen-printed carbon electrode modified with a chitosan–gold nanoparticles composite cryogel on prussian blue-coated multi-walled carbon nanotubes. Food Chem 364:130396. https://doi.org/10.1016/j.foodchem.2021.130396

    Article  CAS  PubMed  Google Scholar 

  • Osiebe O, Adewale IO, Omafuvbe BO (2023) Intracellular invertase hyperproducing strain of Saccharomyces cerevisiae isolated from Abagboro palm wine. Sci Rep 13(1):4937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özer B, Akardere E, Çelem EB, Önal S (2010) Three-phase partitioning as a rapid and efficient method for purification of invertase from tomato. Biochem Eng J 50(3):110–115

    Article  Google Scholar 

  • Perçin I, İdil N, Denizli A (2018) RNA purification from Escherichia coli cells using boronated nanoparticles. Colloids Surf B 162:146–153

    Article  Google Scholar 

  • Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A (2020) Natural sweeteners: the relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int J Environ Res Public Health 17(17):6285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Shakya AK, Kumar A (2012) Boronate affinity chromatography of cells and biomacromolecules using cryogel matrices. Enzyme Microb Technol 51(6–7):373–381

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Li Y, Pan X, Marina ML, Jiang Z (2020) Boronate affinity glycosyl molecularly imprinted polymer microspheres for the determination of teicoplanin using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 1615:460776

    Article  CAS  PubMed  Google Scholar 

  • Türkmen D, Bakhshpour M, Akgönüllü S (2022) Heavy metal ions removal from wastewater using cryogels: a review. Front sustain. https://doi.org/10.3389/frsus.2022.765592

    Article  Google Scholar 

  • Uygun M, Uygun DA, Özçalışkan E, Akgöl S, Denizli A (2012) Concanavalin A immobilized poly (ethylene glycol dimethacrylate) based affinity cryogel matrix and usability of invertase immobilization. J Chromatogr B 887:73–78

    Article  Google Scholar 

  • Veana F, Flores-Gallegos AC, Gonzalez-Montemayor AM (2018) Invertase: an enzyme with importance in confectionery food industry. Enzym Food Technol. https://doi.org/10.1007/978-981-13-1933-4_10

    Article  Google Scholar 

  • Wartenberg A, Weisser J, Schnabelrauch M (2021) Glycosaminoglycan-based cryogels as scaffolds for cell cultivation and tissue regeneration. Molecules 26(18):5597. https://doi.org/10.3390/molecules26185597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon MH, Choi WY, Kwon SJ, Yi SH, Lee DH, Lee JS (2007) Purification and properties of intracellular invertase from alkalophilic and thermophilic Bacillus cereus TA-11. J Appl Biol Chem 50(4):196–201

    CAS  Google Scholar 

  • Zenger O, Peşint GB (2022) Preparation of molecularly imprinted bilayer cryogel columns for selective protein depletion. Process Biochem 117:90–100

    Article  CAS  Google Scholar 

  • Zohri AENA, Gaber AAM, Ahmed OM, Mohammed AH (2018) Isolation and partial purification of invertase from different baker’s and distillery Saccharomyces cerevisiae. Egyptian Sugar J 11:85–101

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Authors performed the research equally. IPD carried out the characterization studies. GBP and IPD designed and wrote the paper.

Corresponding author

Correspondence to Gözde Baydemir Peşint.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baydemir Peşint, G., Eren Yüngeviş, B. & Perçin Demirçelik, I. Enhanced invertase binding from baker’s yeast via cryogels included boronic acids. World J Microbiol Biotechnol 39, 267 (2023). https://doi.org/10.1007/s11274-023-03697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03697-y

Keywords

Navigation