Skip to main content
Log in

Synthesis and Characterization of a Novel Series of Cross-Linked (Phenol, Formaldehyde, Alkyldiamine) Terpolymers for the Removal of Toxic Metal Ions from Wastewater

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A novel series of cross-linked terpolymers synthesized from phenol, formaldehyde and four alkyldiamines via Mannich reaction in n-hexane at \({90^{\circ}}\)C is introduced for the removal of lead(II) ions in the concentration range of 50–136 mgL−1 from aqueous solutions. The synthesized terpolymers were characterized by spectroscopic techniques such as 13C-NMR, FT-IR and elemental analysis. The surface morphology, composition and crystallinity were investigated by scanning electron microscopy and powder X-ray. The adsorption of lead(II) ions was studied by batch equilibrium technique. The experimental data for the adsorption of lead(II) ions fitted Freundlich and Temkin isotherm models. The maximum adsorption capacity of lead(II) ions was found to be 222.2 mg g−1 for Ph–Buta with a removal of 98 % within 4 h of adsorption. Adsorption kinetics for Ph–Buta were investigated and fitted pseudo-second-order kinetic model. The adsorption mechanism was studied by intraparticle diffusion model and found to follow film diffusion and intraparticle diffusion simultaneously. The adsorption of lead(II) ions was spontaneous and endothermic in nature with an increase of adsorption capacity as temperature increased. Ph–Buta terpolymer showed high efficacy in the removal of toxic metal ions from spiked [1 mg L−1 solution of lead(II) ions] and unspiked wastewater samples with ~100 % removal of lead(II) ions. The excellent adsorption capacity of Ph–Buta provides a new, efficient adsorbent for treatment and separation of lead(II) ions from contaminated aqueous solutions and wastewater solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dulcy Evangelin C., Gunasekaran S.G., Dharmendirakumar M.: Removal of lead ions from aqueous solutions by adsorption onto chemically modified silk cotton hulls by different oxidizing agents. Asia Pac. J. Chem. Eng. 8, 189–201 (2013)

    Article  Google Scholar 

  2. Atia A.A., Donia A.M., Yousif A.M.: Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Sep. Purif. Technol. 61, 348–357 (2008)

    Article  Google Scholar 

  3. Mahdavi S., Jalali M., Afkhami A.: Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem. Eng. Commun. 200, 448–470 (2013)

    Article  Google Scholar 

  4. Reagan P.L., Silbergeld E.K.: Establishing a health based standard for lead in residential soils. Trace Subst. Environ. Health 23, 199–238 (1990)

    Google Scholar 

  5. Boudrahem F., Aissani-Benissad F., Soualah A.: Kinetic and equilibrium study of the sorption of lead(II) ions from aqueous phase by activated carbon. Arab. J. Sci. Eng. 38(8), 1939–1949 (2013)

    Article  Google Scholar 

  6. Edris G., Alhamed Y., Alzahrani A.: Biosorption of cadmium and lead from aqueous solutions by Chlorella vulgaris biomass: equilibrium and kinetic study. Arab. J. Sci. Eng. 39(1), 87–93 (2014)

    Article  Google Scholar 

  7. Gharieb M., Al-Fakih A., Ali M.: Biosorption of Pb(II) and Co(II) ions from aqueous solutions using pretreated rhizopus oryzae (bread mold). Arab. J. Sci. Eng. 39(4), 2435–2446 (2014)

    Article  Google Scholar 

  8. Bhatt, R.R.; Shah, B.A.: Sorption studies of heavy metal ions by salicylic acid–formaldehyde–catechol terpolymeric resin: isotherm, kinetic and thermodynamics. Arab. J. Chem. doi:10.1016/j.arabjc.2013.03.012

  9. Jakubiak A., Owsik I.A., Kolarz B.N.: The oxidation of hydroquinone catalysed by Cu(II) ions immobilized on acrylic resins. The influence of ionic liquid. React. Funct. Polym. 65, 161–167 (2005)

    Article  Google Scholar 

  10. Kolarz B.N., Jakubiak A., Jezierska J., Dach B.: Polymeric supports with amino groups from halogenoacetylated styrene/divinylbenzene copolymers. React. Funct. Polym. 68, 1207–1217 (2008)

    Article  Google Scholar 

  11. Maurya M.R., Sikarwar S., Joseph T., Manikandan P., Halligudi S.B.: Synthesis, characterization and catalytic potentials of polymer anchored copper(II), oxovanadium(IV) and dioxomolybdenum(VI) complexes of 2-(α-hydroxymethyl)benzimidazole. React. Funct. Polym. 63, 71–83 (2005)

    Article  Google Scholar 

  12. Gupta K.C., Sutar A.K.: Catalytic activities of polymer-supported metal complexes in oxidation of phenol and epoxidation of cyclohexene. Polym. Adv. Technol. 19, 186–200 (2008)

    Article  Google Scholar 

  13. Gupta K.C., Sutar A.K.: Catalytic activity of polymer anchored N, N′-bis (o-hydroxy acetophenone) ethylene diamine Schiff base complexes of Fe(III), Cu(II) and Zn(II) ions in oxidation of phenol. React. Funct. Polym. 68, 12–26 (2008)

    Article  Google Scholar 

  14. Ruiz M., Sastre A.M., Guibal E.: Palladium sorption on glutaraldehyde-crosslinked chitosan. React. Funct. Polym. 45, 155–173 (2000)

    Article  Google Scholar 

  15. Fu F., Wang Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)

    Article  Google Scholar 

  16. Lawson, F.; Jay, W.H.: Preparation of ion exchange resin distributed in a polyurethane matrix and its use for extraction of metal ions. WO9400237A1

  17. Walker, F.H.; Vedage, G.A.; Cook, M.I.; Rasing, R.M.T.: Mannich base reaction product, amine curing agent for low temperature cure applications, amine composition and amine–epoxy composition. EP2108668A1

  18. Ebraheem K.A.K., Hamdi S.T.: Synthesis and properties of a copper selective chelating resin containing a salicylaldoxime group. React. Funct. Polym. 34, 5–10 (1997)

    Article  Google Scholar 

  19. Azarudeen R.S., Subha R., Jeyakumar D., Burkanudeen A.R.: Batch separation studies for the removal of heavy metal ions using a chelating terpolymer: Synthesis, characterization and isotherm models. Sep. Purif. Technol. 116, 366–377 (2013)

    Article  Google Scholar 

  20. Ali S.A., Al Hamouz O.C.S., Hassan N.M.: Novel cross-linked polymers having pH-responsive amino acid residues for the removal of Cu2+ from aqueous solution at low concentrations. J. Hazard. Mater. 248, 47–58 (2013)

    Article  Google Scholar 

  21. Dupre, F.C.; Foucht, M.E.; Freese, W.P.; Gabrielson, K.D.; Gapud, B.D.; Ingram, W.H.; McVay, T.E.; Rediger, R.A.; Shoemake, K.A.; Tutin, K.K.; Wright, J.T.: Preparation of cyclic urea–formaldehyde polymer–modified phenol–formaldehyde and melamine–formaldehyde resin-based binders and their uses. WO9932534A1

  22. Lenghaus K., Qiao G.G., Solomon D.H.: The effect of formaldehyde to phenol ratio on the curing and carbonisation behaviour of resole resins. Polymer 42, 3355–3362 (2001)

    Article  Google Scholar 

  23. Kishore N., Sachan S., Rai K.N., Kumar A.: Synthesis and characterization of a nanofiltration carbon membrane derived from phenol–formaldehyde resin. Carbon 41, 2961–2972 (2003)

    Article  Google Scholar 

  24. Subramaniapillai S.G.: Mannich reaction: A versatile and convenient approach to bioactive skeletons. J. Chem. Sci. 125, 467–482 (2013)

    Article  Google Scholar 

  25. Cavus S., Gurdag G.: Noncompetitive removal of heavy metal ions from aqueous solutions by poly[2-(acrylamido)-2-methyl-1-propanesulfonic acid-co-itaconic acid] hydrogel. Ind. Eng. Chem. Res. 48, 2652–2658 (2009)

    Article  Google Scholar 

  26. Bellamy L.J.: The Infrared Spectra of Complex Molecules, 3rd edn. Chapman and Hall, London (1972)

    Google Scholar 

  27. Stuart B.H.: Infrared Spectroscopy—Fundamentals and Applications. Wiley, Chichester (2004)

    Book  Google Scholar 

  28. Rego R., Adriaensens P.J., Carleer R.A., Gelan J.M.: Fully quantitative carbon-13 NMR characterization of resol phenol–formaldehyde prepolymer resins. Polymer 45, 33–38 (2004)

    Article  Google Scholar 

  29. Georgakopoulos A.: Aspects of solid state 13C CPMAS NMR spectroscopy in coals from the Balkan Peninsula. J. Serb. Chem. Soc. 68, 599–605 (2003)

    Article  Google Scholar 

  30. Chuang I.S., Maciel G.E., Myers G.E.: Carbon-13 NMR study of curing in furfuryl alcohol resins. Macromolecules 17, 1087–1090 (1984)

    Article  Google Scholar 

  31. Muylaert I., Verberckmoes A., De Decker J., VanDer Voort P.: Ordered mesoporous phenolic resins: Highly versatile and ultra stable support materials. Adv. Colloid Interface Sci. 175, 39–51 (2012)

    Article  Google Scholar 

  32. Hirst A.R., Smith D.K., Feiters M.C., Geurts H.P.M.: Two-component dendritic gel: effect of spacer chain length on the supramolecular chiral assembly. Langmuir 20, 7070–7077 (2004)

    Article  Google Scholar 

  33. Blackwell J., Nagarajan M.R., Hoitink T.B.: Structure of polyurethane elastomers: effect of chain extender length on the structure of MDI/diol hard segments. Polymer 23, 950–956 (1982)

    Article  Google Scholar 

  34. Mengistie A.A., Rao T.S., Rao A.V.P., Singanan M.: Removal of lead(II) ions from aqueous solutions using activated carbon from Militia ferruginea plant leaves. Bull. Chem. Soc. Ethiop. 22, 349–360 (2008)

    Google Scholar 

  35. Sheng P.X., Ting Y.-P., Chen J.P., Hong L.: Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275, 131–141 (2004)

    Article  Google Scholar 

  36. Bradl H.B.: Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277, 1–18 (2004)

    Article  Google Scholar 

  37. de Oliveira Vaz D., Fernandes A.N., Szpoganicz B., Sierra M.M.D.: Potentiometric quantification and speciation of oxygenated groups in humic substances using BEST7 software. Ecletica Quim. 35, 1–7 (2010)

    Google Scholar 

  38. Zhu Y., Hu J., Wang J.: Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J. Hazard. Mater. 221-222, 155–161 (2012)

    Article  Google Scholar 

  39. Kampalanonwat P., Supaphol P.: Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl. Mater. Interfaces 2, 3619–3627 (2010)

    Article  Google Scholar 

  40. Shaaban A.F., Fadel D.A., Mahmoud A.A., Elkomy M.A., Elbahy S.M.: Synthesis of a new chelating resin bearing amidoxime group for adsorption of Cu(II), Ni(II) and Pb(II) by batch and fixed-bed column methods. J. Environ. Chem. Eng. 2, 632–641 (2014)

    Article  Google Scholar 

  41. Khalili S., Ghoreyshi A.A., Jahanshahi M., Pirzadeh K.: Enhancement of carbon dioxide capture by amine-functionalized multi-walled carbon nanotube. Clean Soil Air Water 41, 939–948 (2013)

    Google Scholar 

  42. Tay T., Candan M., Erdem M., Cimen Y., Turk H.: Biosorption of cadmium ions from aqueous solution onto non-living lichen Ramalina fraxinea biomass. Clean Soil Air Water 37, 249–255 (2009)

    Article  Google Scholar 

  43. Hsueh C.-L., Lu Y.-W., Hung C.-C., Huang Y.-H., Chen C.-Y.: Adsorption kinetic, thermodynamic and desorption studies of C.I. Reactive Black 5 on a novel photoassisted Fenton catalyst. Dyes Pigm. 75, 130–135 (2007)

    Article  Google Scholar 

  44. Boparai H.K., Joseph M., O’Carroll D.M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186, 458–465 (2011)

    Article  Google Scholar 

  45. Subha R., Namasivayam C.: Kinetics and isotherm studies for the adsorption of phenol using low cost micro porous ZnCl2 activated coir pith carbon. Can. J. Civ. Eng. 36, 148–159 (2009)

    Article  Google Scholar 

  46. He Z.-Y., Nie H.-L., Branford-White C., Zhu L.-M., Zhou Y.-T., Zheng Y.: Removal of Cu2+ from aqueous solution by adsorption onto a novel activated nylon-based membrane. Bioresour. Technol. 99, 7954–7958 (2008)

    Article  Google Scholar 

  47. Ma X., Li L., Yang L., Su C., Wang K., Yuan S., Zhou J.: Adsorption of heavy metal ions using hierarchical CaCO3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. J. Hazard. Mater. 209-210, 467–477 (2012)

    Article  Google Scholar 

  48. Unuabonah E.I., Adebowale K.O., Olu-Owolabi B.I.: Kinetic and thermodynamic studies of the adsorption of lead(II) ions onto phosphate-modified kaolinite clay. J. Hazard. Mater. 144, 386–395 (2007)

    Article  Google Scholar 

  49. Coşkun R., Soykan C., Saçak M.: Removal of some heavy metal ions from aqueous solution by adsorption using poly(ethylene terephthalate)-g-itaconic acid/acrylamide fiber. React. Funct. Polym. 66(6), 599–608 (2006)

    Article  Google Scholar 

  50. Júnior, O.K.; Gurgel, L.V.A.; Freitas, R.P.de ; Gil, L.F.: Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr. Polym. 77(3), 643–650 (2009)

  51. Singh V., Tiwari S., Sharma A.K., Sanghi R.: Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate). J. Colloid Interface Sci. 316(2), 224–232 (2007)

    Article  Google Scholar 

  52. Wang J.-W., Kuo Y.-M.: Preparation of fructose-mediated (polyethylene glycol/chitosan) membrane and adsorption of heavy metal ions. J. Appl. Polym. Sci. 105(3), 1480–1489 (2007)

    Article  Google Scholar 

  53. Chen A.-H., Yang C.-Y., Chen C.-Y., Chen C.-Y., Chen C.-W.: The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J. Hazard Mater. 163(2–3), 1068–1075 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othman Charles S. Al Hamouz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Hamouz, O.C.S. Synthesis and Characterization of a Novel Series of Cross-Linked (Phenol, Formaldehyde, Alkyldiamine) Terpolymers for the Removal of Toxic Metal Ions from Wastewater. Arab J Sci Eng 41, 119–133 (2016). https://doi.org/10.1007/s13369-015-1622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1622-0

Keywords

Navigation