Skip to main content

Advertisement

Log in

Susceptibility of 254 SMO Alloys to Crevice Corrosion in NaCl Solution

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

254 SMO alloy was tested under different applied potentials to study the susceptibility of this alloy to crevice corrosion. XPS measurements have been carried out to detect and define the products that formed on the surface of 254 SMO in 22 % NaCl at 30 °C after three days in three situations: without applied potential, at two applied potentials = 300 and 600 mVSCE. The formation of Fe, Cr and Mo compounds that play a great role to protect the alloy were found. The corroded sample was studied using EIS technique. The morphology of the corroded surface under the washer tooth was studied. The dividing of the corrosion area under the washer teeth is agreement with IR drop theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, K.; Pickering, H.W.: Demonstration of crevice corrosion in alkaline solution without acidification. J. Electrochem. Soc. 137, 3313 (1990)

    Google Scholar 

  2. Fontana, M.G.: Corrosion Engineering, 3rd edn. McGraw– Hill, New York (1986)

  3. Sundararajan, T.; Akiyama, E.; Tsuzaki, K.: Hydrogen mapping across a crevice: effect of applied potential. ScriptaMaterialia 53, 1219 (2005)

    Google Scholar 

  4. Oldfield, J.W.; Sutton, W.H.: Crevice corrosion of stainless steels, I. A mathematical model. Br. Corros. J. 13, 1 (1978)

    Google Scholar 

  5. Cho, K.; Pickering, H.W.: The role of chloride ions in the IR > IR* criterion for crevice corrosion in iron. J. Electrochem. Soc. 138, L56 (1991)

  6. Pickering, H.W.: Important early developments and current understanding of the IR mechanism of localized corrosion. J. Electrochem. Soc. 150, K1 (2003)

  7. Abdulsalam, M.I.: Behaviour of crevice corrosion in iron. Corros. Sci. 47, 1336 (2005)

    Google Scholar 

  8. Oldfield, J.W.; Sutton, W.H.: Crevice corrosion of stainless steels. I: a mathematical model. Br. Corros. J. 13, 13 (1978)

    Google Scholar 

  9. Oldfield, J.W.; Sutton, W.H.: New technique for predicting the performance of stainless steels in sea water and other chloride-containing environments. Br. Corros. J. 15, 31 (1980)

    Google Scholar 

  10. Hu, Q.; Zhang, G.; Qiu, Y.; Guo, X.: The crevice corrosion behaviour of stainless steel in sodium chloride solution. Corros. Sci. 53, 4065 (2011)

    Google Scholar 

  11. Garverick, L.: Corrosion in the petrochemical industry. ASM International, p. 501 (1994)

  12. Tan, Y.M.R.: Heterogeneous electrode processes and localized corrosion. Wiley, New York (2013)

  13. Kocijan, A.; Donik, C.; Jenko, M.: The corrosion behaviour of duplex stainless steel in chloride solutions studied by XPS. Mater. Technol. 43, 4, 195 (2009)

    Google Scholar 

  14. Donik, C.; Kocijan, A.; Grant, J.T.; Jenko, M.; Drenik, A.; Pihlar, B.: XPS study of duplex stainless steel oxidized by oxygen atoms. Corros. Sci. 51, 827 (2009)

    Google Scholar 

  15. Nagarajan, S.; Rajendran, N.: Crevice corrosion behavior of superaustenitic stainless steels: dynamic electrochemical impedance spectroscopy and atomic force microscopy studies. Corros. Sci. 51, 217 (2009)

    Google Scholar 

  16. Olsson, C.-O.A.; Landolt, D.: Passive films on stainless steels—chemistry, structure and growth. Electrochimi. Acta. 48(9), 1093 (2003)

    Google Scholar 

  17. Razavi, G.R.; Gholami, H.; Zirepour, G.R.; Zamani, D.; Saboktakin, M.; Monajati, H.: Study corrosion of high-Mn steels with Mo in 3.5 % NaCl solution. In: 2011 International Conference on Advanced Materials Engineering IPCSIT, vol. 15.36, Singapore (2011)

  18. Refaey, S.; Abd El-Rehim, S.; Taha, F.; Saleh, M.; Ahmed, R.: Inhibition of chloride localized corrosion of mild steel by PO\({_{4}^{3-}}\), CrO\({_{4}^{2-}}\), MoO\({_{4}^{2-}}\), and NO\({_{2}^{-}}\) Anions. Appl. Surf. Sci. 158, 190 (2000)

  19. Sakashita, M.; Sato, N.: The effect of molybdate anion on the ion-selectivity of hydrous ferric oxide films in chloride solutions. Corros. Sci. 17, 473 (1977)

    Google Scholar 

  20. Zhao, J.M.; Zuo, Y.: The effects of molybdate and dichromate anions on pit propagation of mild steel in bicarbonate solution containing Cl. Corros. Sci. 44, 2119 (2002)

    Google Scholar 

  21. Betova, I.; Martin, B.; Anders, E.; Gunilla, F.; Timo, L.; Kari, M.; Timo, S.; Göran, S.: Contact electric impedance and resistance studies of the conduction mechanism in passive films on ferrous alloys. Electrochi. Acta 46, 3627 (2001)

    Google Scholar 

  22. McGuire M.F.: Stainless steels for design engineers. ASM Int. 1, 121 (2008)

    Google Scholar 

  23. Sato N., Cohenm M.: The kinetics of anodic oxidation of iron in neutral solution: II. Initial stages. J. Electrochem. Soc. 111, 519 (1964)

    Article  Google Scholar 

  24. Bhola, R.; Bhola, S.; Mishra, B.; Olson, D.: Electrochemical evaluation of wrought titanium –15 molybdenum alloy for dental implant applications in phosphate buffer saline. Port. Electrochim. Acta. 28 (2), 135 (2010). doi:10.4152/pea.201002135

  25. Ummethala, R.; Despang, F.; Gelinsky, M.; Basu, B.: In vitro corrosion and mineralization of novel Ti-Si-C alloy. Electrochim. Acta. 56(11), 3809 (2011)

    Google Scholar 

  26. Yu, B.L.; Pan, X.L.; Uan, J.Y.: Enhancement of corrosion resistance of Mg-9 wt.% Al-1 wt.% Zn alloy by a calcite (CaCO3) conversion hard coating. Corros. Sci. 52, 1874 (2010)

    Google Scholar 

  27. Abdulsalam M.I., Pickering H.W.: Effect of the electrode potential at the outer surface on the potential and current distributions within crevices in pure nickel. Corros. Sci. 41, 351 (1999)

    Article  Google Scholar 

  28. Nystrom, E.A.; Lee, J.B.; Sagü és, A.A.; Pickering, H.W.: An approach for estimating anodic current distributions in crevice corrosion from potential measurements. J. Electrochem. Soc. 141, 358(1994)

    Google Scholar 

  29. Pickering, H.W.; Cho, K.; Nystrom, E.: Microscopic and local probe method for studying crevice corrosion and it’s application to iron and stainless steel. Corros. Sci. 35, 775 (1993)

    Google Scholar 

  30. Xu, Y.; Wang, M.; Pickering, H.W.: On electric field induced breakdown of passive films and IR voltage stabilization of pitting corrosion. J. Electrochem. Soc. 140, 3448 (1993)

    Google Scholar 

  31. Xu, Y.; Pickering, H.W.: The initial potential and current distributions of the crevice corrosion process. J. Electrochem. Soc. 140, 658 (1993)

    Google Scholar 

  32. Watson M., Postelwaite J.: Numerical simulation of crevice corrosion. Corrosion 46, 522 (1990)

    Article  Google Scholar 

  33. Kelly, R.G.; Stewart, K.C.: Combining the ohmic drop and critical crevice solution approaches to rationalize intermediate attack in crevice corrosion. In: Ives, M.B.; Luo, J.L.; Rodda, J.R. (eds.) Passivity of Metals and Semiconductors. p. 547. Ives, PV 99–42. The Electrochemical Society, Pennington (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanaa T. Arab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arab, S.T., Abdulsalam, M.I. & Alghamdi, H.M. Susceptibility of 254 SMO Alloys to Crevice Corrosion in NaCl Solution. Arab J Sci Eng 39, 5405–5412 (2014). https://doi.org/10.1007/s13369-014-1123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1123-6

Keywords

Navigation