Skip to main content
Log in

Corrosion behavior of 2099 Al-Li alloy in NaCl aqueous solution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The corrosion behavior of 2099 Al-Li alloy in NaCl aqueous solutions with different concentrations (1.5, 3.5, and 5.0% in mass fraction) was investigated. Its corrosion resistance was evaluated using electrochemical measurements together with full immersion tests. The results showed that the 2099 Al-Li alloy possessed good corrosion resistance in NaCl aqueous solutions. Its corrosion rate increased with increasing chloride ion concentration. The main form of corrosion failure was pitting corrosion. The impurity containing sulfur leads to surface pitting. The oxide films that formed during the manufacturing process offer a good resistance to corrosion. They are likely to suffer separation, cracking, and drop-off when immersed in aggressive NaCl aqueous solution. The good corrosion susceptibility of the alloy may be attributed to homogeneous coherent nanoscale precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. J.C. Williams and E.A. Starke, Jr.: Progress in structural materials for aerospace systems. Acta Mater. 51, 5775–5799 (2003).

    Article  CAS  Google Scholar 

  2. N.E. Prasad, A. Gokhale, and R. Wanhill: Aluminum-Lithium Alloys: Processing, Properties, and Applications (Butterworth-Heinemann, Oxford, England 2013).

    Google Scholar 

  3. M. Peters and C. Leyens: Aerospace and space materials. In Material Science and Engineering, Encyclopedia of Life Support Systems (EOLSS, Oxford, England).

  4. J. Hirsch, B. Skrotzki, and G. Gottstein: Aluminium Alloys (Wiley, Weinheim, Germany, 2008).

    Google Scholar 

  5. E. Ghali, V.S. Sastri, and M. Elboujdaini: Corrosion Prevention and Protection: Practical Solutions (John Wiley & Sons, Chichester, United Kingdom, 2007).

    Google Scholar 

  6. K.P. Wong and R.C. Alkire: Local chemistry and growth of single corrosion pits in aluminum. J. Electrochem. Soc. 137, 3010–3015 (1990).

    Article  CAS  Google Scholar 

  7. C-M. Liao and R.P. Wei: Galvanic coupling of model alloys to aluminum — A foundation for understanding particle-induced pitting in aluminum alloys. Electrochim. Acta 45, 881–888 (1999).

    Article  CAS  Google Scholar 

  8. G. Chen, M. Gao, and R. Wei: Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3. Corrosion 52, 8–15 (1996).

    Article  CAS  Google Scholar 

  9. W.O. Soboyejo and T. Srivatsan: Advanced Structural Materials: Properties, Design Optimization, and Applications (CRC Press, Boca Raton, FL, 2006).

    Book  Google Scholar 

  10. C. Giummarra, R. Rioja, G. Bray, P. Magnusen, and J. Moran: Al-Li alloys: Development of corrosion resistant, high toughness aluminium-lithium aerospace alloys. In Proceedings of the 11th International Conference on Aluminum Alloys (ICAA11), Aachen, Germany, 2008, pp. 176–188.

  11. R.J. Rioja and J. Liu: The evolution of Al-Li base products for aerospace and space applications. Metall. Mater. Trans. A 43, 3325–3337 (2012).

    Article  CAS  Google Scholar 

  12. W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferreira, and A. Garcia: Corrosion resistance of directionally solidified Al-6Cu-1Si and Al-8Cu-3Si alloys castings. Mater. Des. 32, 3832–3837 (2011).

    Article  Google Scholar 

  13. X. Zhang, Z.H. Jiang, Z.P. Yao, Y. Song, and Z.D. Wu: Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros. Sci. 51, 581–587 (2009).

    Article  CAS  Google Scholar 

  14. B. Zaid, D. Saidi, A. Benzaid, and S. Hadji: Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 50, 1841–1847 (2008).

    Article  CAS  Google Scholar 

  15. J.R. Davis: Corrosion of Aluminum and Aluminum Alloys (ASM International, Materials Park, OH, 1999).

    Book  Google Scholar 

  16. W. Osório, J. Spinelli, I. Ferreira, and A. Garcia: The roles of macrosegregation and of dendritic array spacings on the electrochemical behavior of an Al-4.5 wt.% Cu alloy. Electrochim. Acta 52, 3265–3273 (2007).

    Article  Google Scholar 

  17. W.R. Osorio, D.J. Moutinho, L.C. Peixoto, I.L. Ferreira, and A. Garcia: Macrosegregation and microstructure dendritic array affecting the electrochemical behaviour of ternary Al–Cu–Si alloys. Electrochim. Acta 56, 8412–8421 (2011).

    Article  CAS  Google Scholar 

  18. W.R. Osorio, E.S. Freitas, J.E. Spinelli, M.V. Cante, C.R. Afonso, and A. Garcia: Assessment of electrochemical and mechanical behavior of hot-extruded powders and as-cast samples of Al-Ni alloys. Int. J. Electrochem. Sci. 7, 9946–9971 (2012).

    CAS  Google Scholar 

  19. G. Mearini and R. Hoffman: Tensile properties of aluminum/alumina multilayered thin films. J. Electron. Mater. 22, 623–629 (1993).

    Article  CAS  Google Scholar 

  20. M. Saif, S. Zhang, A. Haque, and K. Hsia: Effect of native Al2O3 on the elastic response of nanoscale Al films. Acta Mater. 50, 2779–2786 (2002).

    Article  CAS  Google Scholar 

  21. Z. Szklarska-Smialowska: Pitting corrosion of aluminum. Corros. Sci. 41, 1743–1767 (1999).

    Article  CAS  Google Scholar 

  22. S. Wang and M. Starink: Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50, 193–215 (2005).

    Article  Google Scholar 

  23. B.C. Muddle and I. Polmear: The precipitate Ω phase in Al-Cu-Mg-Ag alloys. Acta Metall. 37, 777–789 (1989).

    Article  CAS  Google Scholar 

  24. Z. Ahmad and B. Aleem: Effect of nano Al (Scx-1Zrx) precipitates on the mechanical and corrosion behavior of Al-2.5 Mg alloys. Mater. Corros. 62, 335–345 (2011).

    Article  CAS  Google Scholar 

  25. K. Ralston, N. Birbilis, M. Weyland, and C. Hutchinson: The effect of precipitate size on the yield strength-pitting corrosion correlation in Al-Cu-Mg alloys. Acta Mater. 58, 5941–5948 (2010).

    Article  CAS  Google Scholar 

  26. N. Birbilis, M. Cavanaugh, L. Kovarik, and R. Buchheit: Nanoscale dissolution phenomena in Al–Cu–Mg alloys. Electrochem. Commun. 10, 32–37 (2008).

    Article  CAS  Google Scholar 

  27. K. Ralston, N. Birbilis, M. Cavanaugh, M. Weyland, B. Muddle, and R. Marceau: Role of nanostructure in pitting of Al-Cu-Mg alloys. Electrochim. Acta 55, 7834–7842 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, CH., He, SC. et al. Corrosion behavior of 2099 Al-Li alloy in NaCl aqueous solution. Journal of Materials Research 29, 1344–1353 (2014). https://doi.org/10.1557/jmr.2014.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.121

Navigation