Skip to main content
Log in

Wavelets generated by Riesz potentials of KdV solitons

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In recent years the study of wavelets gained much popularity among mathematicians and applied scientists. It firmly established itself in the field of series and integral expansions and signal processing and led to new and interesting applications. Our interest in this article stems from finding a completely new representative of wavelets, the one coming from the fractional derivative of Korteweg–de Vries solitons. More precisely, we mean by this Riesz fractional derivatives of the well-known KdV solitons. The Riesz fractional derivative and its conjugate are given via the Hilbert transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. National Bureau of Standards, Washington (1964)

  2. Bracewell, R.: The Fourier Transform and its Applications, III edn. McGraw-Hill, New York (2000)

    Google Scholar 

  3. Chui, C.: An Introduction to Wavelets. Academic Press, New York (1992)

    MATH  Google Scholar 

  4. Debnath, L.: Wavelet Transforms and Their Applications. Birkhauser, Boston (2002)

    Book  MATH  Google Scholar 

  5. Duoandikoetxia, J.: Fourier Analysis. American Mathematical Society, Providence (2001)

    Google Scholar 

  6. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 1. McGraw Hill, New York (1954)

    Google Scholar 

  7. Glasser, M.L.: A remarkable property of definite integrals. Math. Comput. 40, 561–563 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartman, P.: Ordinary Differential Equations. Wiley, Baltimore (1973)

    MATH  Google Scholar 

  9. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in Applied Mathematics. Advances in Math., Supplementary Studies, vol. 8, pp. 93–128 (1983)

  10. Kenig, C., Ponce, G., Vega, L.: On the (generalized) Korteweg-de Vries equation. Duke Math. J. 59, 585–610 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kenig, C., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levandosky, S., Liu, Y.: Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete Contin. Dyn. Syst. 7(4), 793–806 (2007)

    Article  MathSciNet  Google Scholar 

  13. McPhedran, R., Botten, L., Nicorovici, N., Zucker, J.: Symmetrization of the Hurwitz zeta function and Dirichlet L functions. Proc. R. Soc. Lond. Ser. A 463, 281–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vols. 1 and 2. Gordon and Breach, London (1983)

  15. Saut, J.C., Temam, R.: Remarks on the Korteweg-de Vries equation. Isr. J. Math. 24(1), 78–87 (1976)

    Google Scholar 

  16. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer, Dordrecht (2001)

  17. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  18. Temme, N., Varlamov, V.: Asymptotic expansions for Riesz fractional derivatives of Airy functions and applications. J. Comput. Appl. Math. 232, 201–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals, II edn. Oxford University Press, Glasgow (1962)

    Google Scholar 

  20. Vallée, O., Soares, M.: Airy Functions and Applications to Physics. Imperial College Press, London (2004)

    MATH  Google Scholar 

  21. Varlamov, V.: Semi-integer derivatives of the Airy function and related properties of the Korteweg-de Vries-type equations. Z. Angew. Math. Phys. 59, 381–399 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Varlamov, V.: Differential and integral relations involving fractional derivatives of Airy functions and applications. J. Math. Anal. Appl. 348, 101–115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Varlamov, V.: Riesz potentials for Korteweg-de Vries solitons. Z. Angew. Math. Phys. 61, 41–61 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Varlamov, V.: Properties of Riesz fractional derivatives for Korteweg-de Vries solitons. Z. Angew. Math. Phys. 61, 1017–1031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

In order to complement the study of [23] we present here

Theorem 8

(Poisson’s Summation Formula) For \(\alpha >0\) and \(x\in \mathbb R \)

$$\begin{aligned} \sum _{k=-\infty }^{\infty }u_{\alpha }(x+2\pi k)&= \sum _{k=-\infty }^{\infty }\frac{k|k|^{\alpha }}{\sinh (\pi k/2)}e^{ikx},\\ \sum _{k=-\infty }^{\infty }v_{\alpha }(x+2\pi k)&= -i\sum _{k=-\infty }^{\infty }\text{ sgn}(k)\frac{k|k|^{\alpha }}{\sinh (\pi k/2)}e^{ikx}. \end{aligned}$$

Proof

It follows from the asymptotics of the functions \(u_{\alpha }(x)\) and \(v_{\alpha }(x)\) (see [23]) that for \(\alpha >0\) and \(|x|\rightarrow \infty \)

$$\begin{aligned} u_{\alpha }(x),\; v_{\alpha }(x)=O\left(\frac{1}{\left(1+|x|^{2}\right){}^{(1+\alpha )/2}}\right). \end{aligned}$$

(3.2) and (3.4) show that similar estimates hold for their Fourier transforms. Therefore, by Corollary 2.26 of [3], p. 46, the Poisson Summation formula holds true for these functions. The theorem is proved.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varlamov, V. Wavelets generated by Riesz potentials of KdV solitons. Anal.Math.Phys. 2, 325–346 (2012). https://doi.org/10.1007/s13324-012-0049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-012-0049-y

Keywords

Navigation