Skip to main content
Log in

Humoral-Targeted Immunotherapies in Multiple Sclerosis

  • Review
  • Published:
Neurotherapeutics

Summary

The continuous improvements of our understanding of the pathophysiological changes that occur in multiple sclerosis (MS) have translated into many novel therapeutic agents at different stages of development. These agents target more specifically the innate or the adaptive immune response. We will review agents available or under development that target the humoral pathways of the adaptive immune response. As such, humoral targeted immunotherapies that are being developed for MS are discussed herein: rituximab, ocrelizumab, and ofatumumab show promise as B-cell depleting agents. Other agents, such as atacicept were suspended during development in MS due to increased inflammatory activity versus the placebo. Although most agents were tested in relapsing-remitting forms of MS, rituximab and ocrelizumab have both been studied in progressive MS, whereas ocrelizumab only is currently moving forward in primary progressive MS trials. We provide an overview of agents available and under development that target the humoral response and include their mechanisms of action, safety profiles, and results of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol 2007;17:210-218.

    Article  PubMed  Google Scholar 

  2. Ramagopalan SV, Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol 2010;9:727-739.

    Article  PubMed  Google Scholar 

  3. Ray A, Mann MK, Basu S, Dittel BN. A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 2011;230:1-9.

    Article  PubMed  CAS  Google Scholar 

  4. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 2004;14:164-167.

    Article  PubMed  Google Scholar 

  5. Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007;130:1089-1104.

    Article  PubMed  Google Scholar 

  6. Siden A. Isoelectric focusing and crossed immunoelectrofocusing of CSF immunoglobulins in MS. J Neurol 1979;221:39-51.

    Article  PubMed  CAS  Google Scholar 

  7. Izquierdo G, Angulo S, Garcia-Moreno JM, et al. Intrathecal IgG synthesis: marker of progression in multiple sclerosis patients. Acta Neurol Scand 2002;105:158-163.

    Article  PubMed  CAS  Google Scholar 

  8. Villar LM, Masjuan J, Gonzalez-Porque P, et al. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol 2003;53:222-226.

    Article  PubMed  CAS  Google Scholar 

  9. Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006;180:63-70.

    Article  PubMed  CAS  Google Scholar 

  10. Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK. Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 2005;62:258-264.

    Article  PubMed  Google Scholar 

  11. Duddy M, Niino M, Adatia F, et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 2007;178:6092-6099.

    PubMed  CAS  Google Scholar 

  12. Duddy ME, Alter A, Bar-Or A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol 2004;172:3422-3427.

    PubMed  CAS  Google Scholar 

  13. Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 1996;184:2271-2278.

    Article  PubMed  CAS  Google Scholar 

  14. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002;3:944-950.

    Article  PubMed  CAS  Google Scholar 

  15. Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 2008;118:3420-3423.

    PubMed  CAS  Google Scholar 

  16. Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010;67:452-461.

    Article  PubMed  CAS  Google Scholar 

  17. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495-497.

    Article  PubMed  CAS  Google Scholar 

  18. Gensicke H, Leppert D, Yaldizli O, et al. Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs 2012;26:11-37.

    Article  PubMed  CAS  Google Scholar 

  19. Hafler DA, Weiner HL. Immunosuppression with monoclonal antibodies in multiple sclerosis. Neurology 1988;38:42-47.

    Article  PubMed  CAS  Google Scholar 

  20. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature 1988;332:323-327.

    Article  PubMed  CAS  Google Scholar 

  21. Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol 1980;125:1678-1685.

    PubMed  CAS  Google Scholar 

  22. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000;6:443-446.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor RP, Lindorfer MA. Drug insight: the mechanism of action of rituximab in autoimmune disease — the immune complex decoy hypothesis. Nat Clin Pract Rheumatol 2007;3:86-95.

    Article  PubMed  CAS  Google Scholar 

  24. Naismith RT, Piccio L, Lyons JA, et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology 2010;74:1860-1867.

    Article  PubMed  CAS  Google Scholar 

  25. Bar-Or A, Calabresi PA, Arnold D, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 2008;63:395-400.

    Article  PubMed  CAS  Google Scholar 

  26. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008;358:676-688.

    Article  PubMed  CAS  Google Scholar 

  27. Hawker K, O’Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009;66:460-471.

    Article  PubMed  CAS  Google Scholar 

  28. Coiffier B, Haioun C, Ketterer N, et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 1998;92:1927-1932.

    PubMed  CAS  Google Scholar 

  29. Hainsworth JD, Litchy S, Barton JH, et al. Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 2003;21:1746-1751.

    Article  PubMed  CAS  Google Scholar 

  30. Hainsworth JD. First-line and maintenance treatment with rituximab for patients with indolent non-Hodgkin’s lymphoma. Semin Oncol 2003;30:9-15.

    Article  PubMed  CAS  Google Scholar 

  31. Cohen SB, Emery P, Greenwald MW, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 2006;54:2793-2806.

    Article  PubMed  CAS  Google Scholar 

  32. Emery P, Fleischmann R, Filipowicz-Sosnowska A, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum 2006;54:1390-1340.

    Article  PubMed  CAS  Google Scholar 

  33. Breedveld F, Agarwal S, Yin M, et al. Rituximab pharmacokinetics in patients with rheumatoid arthritis: B-cell levels do not correlate with clinical response. J Clin Pharmacol 2007;47:1119-1128.

    Article  PubMed  CAS  Google Scholar 

  34. Beurskens FJ, Lindorfer MA, Farooqui M, et al. Exhaustion of cytotoxic effector systems may limit monoclonal antibody-based immunotherapy in cancer patients. J Immunol 2012;188:3532-3541.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor RP, Lindorfer MA. Antigenic modulation and rituximab resistance. Semin Hematol 2010;47:124-132.

    Article  PubMed  CAS  Google Scholar 

  36. Nielsen AS, Miravalle A, Langer-Gould A, Cooper J, Edwards KR, Kinkel RP. Maximally tolerated versus minimally effective dose: the case of rituximab in multiple sclerosis. Mult Scler 2012;18:377-378.

    Article  PubMed  Google Scholar 

  37. Genovese MC, Kaine JL, Lowenstein MB, et al. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum 2008;58:2652-2661.

    Article  PubMed  Google Scholar 

  38. Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011;378:1779-1787.

    Article  PubMed  CAS  Google Scholar 

  39. Roche and Biogen Idee decide to suspend ocrelizumab treatment: rheumatoid arthritis development programme on hold (media release). 2010 Mar 8; www.roche.com/media/media_releases/med-cor-2010-03-08.htm. Accessed July 2012.

  40. A study of ocrelizumab in comparison with interferon beta-1a (Rebif) in patients with relapsing multiple sclerosis. Available at: www.clinicaltrials.gov/ct2/show/record/NCT01412333. Accessed July 2012.

  41. American Academy of Neurology, 63rd Annual Meeting. Abstract S41.001. April 9-16 2011.

  42. American Academy of Neurology, 63rd Annual Meeting. Abstract PO4.186. April 9-16 2011.

  43. A study of ocrelizumab in patients with primary progressive multiple sclerosis. Available at: www.clinicaltrials.gov/ct2/show/NCT01194570. Last accessed July 2012.

  44. Cheson BD. Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 2010;28:3525-3530.

    Article  PubMed  CAS  Google Scholar 

  45. Ostergaard M, Baslund B, Rigby W, et al. Ofatumumab, a human anti-CD20 monoclonal antibody, for treatment of rheumatoid arthritis with an inadequate response to one or more disease-modifying antirheumatic drugs: results of a randomized, double-blind, placebo-controlled, phase I/II study. Arthritis Rheum 2010;62:2227-2238.

    Article  PubMed  Google Scholar 

  46. Soelberg Sorensen P, Drulovic J, Havrdova E, et al. MRI efficacy of ofatumumab in relapsing remitting multiple sclerosis 24 week results of a phase II study- ECTRIMS. October 13-16, 2010. http://registration.akm.ch/einsicht.phpXNABSTRACT_ID=118695&XNSPRACHE_ID=2&XNKONGRESS_ID=126&XNMASKEN_ID=900. Accessed October 2012.

  47. Ofatumumab Subcutaneous Administration in Subjects With Relapsing-Remitting Multiple Sclerosis (MIRROR). http://centerwatch.com/clinical-trials/listings/externalstudydetails.aspx. Accessed August 2012.

  48. Thomas TC, Rollins SA, Rother RP, et al. Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol Immunol 1996;33:1389-1401.

    Article  PubMed  CAS  Google Scholar 

  49. Matis LA, Rollins SA. Complement-specific antibodies: designing novel anti-inflammatories. Nat Med 1995;1:839-842.

    Article  PubMed  Google Scholar 

  50. Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364:2106-2112.

    Article  PubMed  CAS  Google Scholar 

  51. Hinson SR, Pittock SJ, Lucchinetti CF, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 2007;69:2221-2223.

    Article  PubMed  CAS  Google Scholar 

  52. Roemer SF, Parisi JE, Lennon VA, et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 2007;130:1194-1205.

    Article  PubMed  Google Scholar 

  53. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 2007;25:1256-1264.

    Article  PubMed  CAS  Google Scholar 

  54. Gruppo RA, Rother RP. Eculizumab for congenital atypical hemolytic-uremic syndrome. N Engl J Med 2009;360:544-546.

    Article  PubMed  CAS  Google Scholar 

  55. Parker C. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet 2009;373:759-767.

    Article  PubMed  CAS  Google Scholar 

  56. Mache CJ, Acham-Roschitz B, Fremeaux-Bacchi V, et al. Complement inhibitor eculizumab in atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol 2009;4:1312-1316.

    Article  PubMed  CAS  Google Scholar 

  57. Nurnberger J, Philipp T, Witzke O, et al. Eculizumab for atypical hemolytic-uremic syndrome. N Engl J Med 2009;360:542-544.

    Article  PubMed  Google Scholar 

  58. Hinson SR, McKeon A, Fryer JP, Apiwattanakul M, Lennon VA, Pittock SJ. Prediction of neuromyelitis optica attack severity by quantitation of complement-mediated injury to aquaporin-4-expressing cells. Arch Neurol 2009;66:1164-1167.

    Article  PubMed  Google Scholar 

  59. An open label study of the effects of eculizumab in neuromyelitis optica. http://clinicaltrials.gov/ct2/show/NCT00904826. Accessed October 2012.

  60. Eculizumab Shows Promise for Preventing NMO Attacks, Keeping Disease in Check. http://journals.lww.com/neurotodayonline/Fulltext/2012/11010/NEWS_FROM_THE_AMERICAN_NEUROLOGICAL_ASSOCIATION.3.aspx. Accessed November 2012.

  61. Hillmen P, Young NS, Schubert J, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 2006;355:1233-1234.

    Article  PubMed  CAS  Google Scholar 

  62. Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F. B cells and multiple sclerosis. Lancet Neurol 2008;7:852-858.

    Article  PubMed  CAS  Google Scholar 

  63. Dillon SR, Gross JA, Ansell SM, Novak AJ. An APRIL to remember: novel TNF ligands as therapeutic targets. Nat Rev Drug Discov 2006;5:235-246.

    Article  PubMed  CAS  Google Scholar 

  64. Krumbholz M, Theil D, Derfuss T, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005;201:195-200.

    Article  PubMed  CAS  Google Scholar 

  65. Thangarajh M, Masterman T, Hillert J, Moerk S, Jonsson R. A proliferation-inducing ligand (APRIL) is expressed by astrocytes and is increased in multiple sclerosis. Scand J Immunol 2007;65:92-98.

    Article  PubMed  CAS  Google Scholar 

  66. Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 2001;15:289-302.

    Article  PubMed  CAS  Google Scholar 

  67. Hartung HP, Kieseier BC. Atacicept: targeting B cells in multiple sclerosis. Ther Adv Neurol Disord 2010;3:205-216.

    Article  PubMed  CAS  Google Scholar 

  68. Atacicept in multiple sclerosis, phase II. Available at: http://clinicaltrials.gov/ct2/show/NCT00642902. Accessed July 2012.

  69. Atacicept in optic neuritis, phase II. Available at: http://clinicaltrials.gov/ct2/show/NCT00624468. Accessed July 2012.

  70. van Oosten BW, Barkhof F, Truyen L, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 1996;47:1531-1534.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Lulu is a recipient of the Sylvia Lawry fellowship award from the National Multiple Sclerosis Society and fellowship training award from Biogen-Idec. Dr. Waubant is funded by the National Multiple Sclerosis Society, National Institutes of Health, and the Nancy Davis Foundation, and is receiving support for ongoing trials from Roche, Sanofi Aventis, and Biogen Idec, and has also provided 3 educational lectures for Teva and Biogen Idec, along with being an ad hoc consultant for Actelion, Chugai, and Sanofi Aventis.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabeen Lulu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lulu, S., Waubant, E. Humoral-Targeted Immunotherapies in Multiple Sclerosis. Neurotherapeutics 10, 34–43 (2013). https://doi.org/10.1007/s13311-012-0164-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-012-0164-3

Keywords

Navigation