Skip to main content
Log in

Integration of a visibility graph based path planning method in the ACT/FHS rotorcraft

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This work presents recent progress at the German Aerospace Center (DLR) in landing guidance for helicopter approaches to landing sites without prior reconnaissance. During the project ALLFlight, DLRs research rotorcraft Advanced Control Technology/Flying Helicopter Simulator (ACT/FHS) has been equipped with a sensor suite including a LIDAR sensor, a forward looking RADAR, an infrared camera and a TV camera to provide sensor-based situational awareness. Using the information acquired by the LIDAR, a method for planning an initial flight path from previously unknown landing entry points to the landing point is presented. It is based on a previously developed method using a vehicle point representation, geo-referenced flight surfaces and visibility graphs. A second mode to provide re-planning capabilities in-flight is described. First results of flight tests conducted in 2013 are presented and discussed. Using the data recorded during these approaches, an improved re-planning strategy for the final approach based on so called visibility hulls is presented. This work continues recent research at DLR’s Institute of Flight Systems helicopter department for flight under degraded visual environment (DVE) for a full-scale helicopter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. http://www.openstreetmap.org.

Abbreviations

AFCS:

Advanced flight control system

CoALa:

Communication application layer

EC:

Experimental-computer

ECC:

Experimental-co-computer

F3S:

Flexible sensor simulation suite

HELLAS:

Helicopter laser radar

LP:

Landing point

LEP:

Landing entry point

LOS:

Line of sight

SCC:

Sensor-co-computer

\(\epsilon\) :

Position tolerance parameter

\(\gamma , \chi\) :

Flight path angle, track

\(\Phi , \Theta , \Psi\) :

Roll, pitch, yaw angles

\(l_{1/2}\) :

Flight path segment lengths

\(S_{\mathrm {HC/LP/comb}}\) :

Subsets of \(\mathbb {R}^3\)

\(t_0\) :

Time at module start

\(t\mathrm{_{calc}}\) :

Calculation time since \(t_0\)

\(t\mathrm{_{predict}}\) :

Time from \(t_0\) to start planning

\(\tau\) :

Bezier curve parameter

\(x_g,y_g,z_g\) :

Geodetic coordinate

\(x_{\mathrm {HC}}\) :

Helicopter position

\(x\mathrm{_{start}}\) :

Start coordinate

\(v_{\mathrm {HC/LP/comb}}\) :

Visibility hulls

References

  1. Lantzsch, R., Greiser, S., Wolfram, J., Wartmann, J., Müllhäuser, M., Lüken, T., Döhler, H.-U., Peinecke, N.: ALLFLIGHT : Helicopter pilot assisstance in all phases of flight, 68th AHSF, Fort Worth, TX, May 1–3, (2012)

  2. Lüken, T., Peinecke, N., Schmerwitz, S., Doehler, H.-U.: ALLFlight-helicopter flight trials under DVE conditions with an AI-130 mmW radar system, 37th European Rotorcraft Forum, Southampton, United Kingdom, September 13–15, (2011)

  3. Greiser, S., Lantzsch, R., Buschbaum, A., Buschbaum, W.: Automatic Landing Detection of Helicopters Equipped with Landing Skid, 67th AHSF, Virginia Beach, VA, May 3–5, (2011)

  4. Peinecke, N., Döhler, H.-U., Korn, B. R.: Simulation of imaging radar using graphics hardware acceleration, Proc. SPIE, Enhanced and Synthetic Vision, Vol. 6957, Orlando, FL, March 17–20, (2008), pp. 695–720. doi:10.1117/12.782622

  5. Peinecke, N., Dohler, H.-U., Korn, B.R.: Real-time millimeter wave radar simulation. J. Aerosp. Comput. Inf. Commun. 10(7), 337–347 (2013). doi:10.2514/1.53403

    Google Scholar 

  6. Duda, H., Gerlach, T., Advani, S., Potter, M.: Design of the DLR AVES Research Flight Simulator, AIAA Modelling and Simulation Technologies Conference (MST), Boston, MA. Aug. 19–22, (2013). doi:10.2514/6.2013-4737

  7. Whalley, M., Schulein, G., Theodore, C., Takahashi, M.: Design and Flight Test Results for a Hemispherical LADAR Developed to Support Unmanned Rotorcraft Urban Operations Research, 64th AHSF, (2008)

  8. Mettler, B., Kong, Z., Goerzen, C., Whalley, M.: Benchmarking of obstacle field navigation algorithms for autonomous helicopters, 66th AHSF, Phoenix, AZ, May 11–13, (2010)

  9. Adolf, F.-M., Abou-Hussein, M., and Goerzen, C.: Trajectory time reduction using field of view-based smoothing of roadmap-based paths, 69th AHSF, Phoenix, AZ, May 21–23, (2013)

  10. Schopferer, S., Adolf, F.-M.: Rapid trajectory time reduction for unmanned rotorcraft navigating in unknown terrain, Proceedings of the International Conference on Unmanned Aircraft Systems, Orlando, Florida, USA, May 27–30., (2014)

  11. Torens, C. and Adolf, F.-M.: Automated verification and validation of an onboard mission planning and execution system for UAVs, Proceedings of AIAA Guidance, Navigation and Control Conference, Boston, Massachusetts, USA, August 19–23., (2013)

  12. Watanabe, Y., Dessus, S., Fabiana, P.: Safe Path Planning with localization uncertainty for urban operation of VTOL UAV, 70th AHSF, Montréal, Québec, Canada, May 20–22, (2014)

  13. Whalley, M. S., Takahashi, M. D., Fletcher, J. W., Moralez, E., Ott, C., Olmstead, M. G., Goerzen, C. L., Schulein, G. J., Savage, J. C., Burns, H. N., Conrad, B.: Flight test results for autonomous obstacle field navigation and landing site selection on the RASCAL JUH-60A, 69th AHSF, Phoenix, AZ, May 21–23, (2013)

  14. Tsenkov, P., Howlett, J., Whalley, M., Schulein, G., Takahashi, M., Rhinehart, M., Mettler, B.: A system for 3D autonomous rotorcraft navigation, Proceedings of the AIAA Guidance, Navigation and Control Conference, (2008)

  15. Chamberlain, L., Scherer, S., Singh, S.: Self-aware helicopters: full-scale automated landing and obstacle avoidance in unmapped environments, 67th AHSF, Virginia Beach, VA, May 3–5, (2011)

  16. Szoboszlay, Z., McKinley, D. R. A., Braddom, L. S., Harrington, W. W., Burns, H., Savage, J. C.: Landing of an H-60 helicopter in brownout conditions using 3D-LZ displays, 66th AHSF, Phoenix, AZ, May 11–13, (2010)

  17. Szoboszlay, Z. P., Fujizawa, B. T., Ott, C. R., Savage, J. C., Goodrich, S. M., McKinley, R. A., Soukup, J. R.: 3D-LZ flight test of 2013: landing an EH-60 L helicopter in a brownout degraded visual environment, 70th AHSF, Montréal, Québec, Canada, May 20–22, (2014)

  18. Farr, T. G. et al.: The shuttle radar topography mission, Reviews of Geophysics, Vol. 45, No. 2, (2007). doi:10.1029/2005RG000183

  19. Gursky, B., Olsman, W., Peinecke, N.: Development of a tunnel-in-the-sky display for helicopter noise abatement procedures. CEAS Aeronaut. J. 5(2), 199–208 (2014). doi:10.1007/s13272-014-0100-9

    Article  Google Scholar 

  20. Strohmaier, T., Hamers, M., Lantzsch, R.: Automatische Führung in Weg und Zeit eines 2,5t Hubschraubers für Anflug und Landung, : Diplomarbeit. Deutsches Zentrum füer Luft- und Raumfahrt e.V, Institut für Flugsystemtechnik (2006)

  21. Strohmaier, T.: Computerbasierte Trajektoriengenerierung für einen bemannten Hubschrauber auf einen unvorbereiteten Landeplatz, Ph.D. thesis, Technische Universität Braunschweig, (2010)

  22. Strohmaier, T., Lantzsch, R., Greiser, S.: Assisted landing for helicopters in confined areas, 36th European Rotorcraft Forum, Paris, France, September 7–9, (2010)

  23. Obermeyer, K. J. and Contributors: The VisiLibity library, http://www.VisiLibity.org, R-1, (2008)

  24. Oskam, T., Sumner, R. W., Thuerey, N., Gross, M.: Visibility transition planning for dynamic camera control, 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation-SCA ’09, Vol. 1, (2009), pp. 55. doi:10.1145/1599470.1599478

  25. Srikanth, M.B., Mathias, P.C., Natarajan, V., Naidu, P., Poston, T.: Visibility volumes for interactive path optimization. Vis. Comput. 24(7–9), 635–647 (2008). doi:10.1007/s00371-008-0244-x

    Article  Google Scholar 

  26. Peinecke, N.: Detection of helicopter landing sites in unprepared terrain. Proceedings SPIE, Degraded Visual Environments, Synthetic, and external Vision Solutions 9087, (2014). doi:10.1117/12.2052674

Download references

Acknowledgments

The work of colleagues at the DLR’s Institutes of Flight Systems and Flight Guidance and the AVES flight simulator are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zimmermann.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 16–18, 2014, Augsburg, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, M., König, C. Integration of a visibility graph based path planning method in the ACT/FHS rotorcraft. CEAS Aeronaut J 7, 391–403 (2016). https://doi.org/10.1007/s13272-016-0197-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-016-0197-0

Keywords

Navigation