Skip to main content
Log in

UAV Path Planning Using Optimization Approaches: A Survey

  • Survey article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Path planning is one of the most important steps in the navigation and control of Unmanned Aerial Vehicles (UAVs). It ensures an optimal and collision-free path between two locations from a starting point (source) to a destination one (target) for autonomous UAVs while meeting requirements related to UAV characteristics and the serving area. In this paper, we present an overview of UAV path planning approaches classified into five main categories including classical methods, heuristics, meta-heuristics, machine learning, and hybrid algorithms. For each category, a critical analysis is given based on targeted objectives, considered constraints, and environments. In the end, we suggest some highlights and future research directions for UAV path planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sullivan JM (2006) Evolution or revolution? the rise of UAVs. IEEE Technol Soc Mag 25(3):43–49

    Article  Google Scholar 

  2. Ibrahim AWN, Ching PW, Seet GG, Lau WM, Czajewski W (2010) Moving objects detection and tracking framework for UAV-based surveillance. In: 2010 fourth Pacific-Rim symposium on image and video technology, pp 456–461. IEEE

  3. Ma'Sum MA, Arrofi MK, Jati G, Arifin F, Kurniawan MN, Mursanto P, Jatmiko W (2013) Simulation of intelligent unmanned aerial vehicle (UAV) for military surveillance. In: 2013 international conference on advanced computer science and information systems (ICACSIS), pp 161–166. IEEE

  4. Senthilnath J, Kandukuri M, Dokania A, Ramesh KN (2017) Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Comput Electron Agric 140:8–24

    Article  Google Scholar 

  5. Katsigiannis P, Misopolinos L, Liakopoulos V, Alexandridis TK, Zalidis G (2016) An autonomous multi-sensor UAV system for reduced-input precision agriculture applications. In: 2016 24th Mediterranean conference on control and automation (MED), pp 60–64. IEEE

  6. Hu D, Qi B, Du R, Yang H, Wang J, Zhuge J (2019) An atmospheric vertical detection system using the multi-rotor UAV. In: 2019 international conference on meteorology observations (ICMO), pp 1–4. IEEE

  7. Rogers K, Rice F, Finn A (2015) UAV-based atmospheric tomography using large eddy simulation data. In: 2015 IEEE tenth international conference on intelligent sensors, sensor networks and information processing (ISSNIP), pp 1–6. IEEE

  8. Holness C, Matthews T, Satchell K, Swindell EC (2016) Remote sensing archeological sites through unmanned aerial vehicle (UAV) imaging. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS), pp 6695–6698. IEEE

  9. Botrugno MC, D’Errico G, De Paolis LT (2017) Augmented reality and UAVs in archaeology: development of a location-based ar application. In: International conference on augmented reality, virtual reality and computer graphics, pp 261–270. Springer

  10. Doherty P, Rudol P (2007) A UAV search and rescue scenario with human body detection and geolocalization. In: Australasian joint conference on artificial intelligence, pp 1–13. Springer

  11. Erdelj M, Natalizio E (2016) UAV-assisted disaster management: Applications and open issues. In: 2016 international conference on computing, networking and communications (ICNC), pp. 1–5. IEEE

  12. Yuncheng L, Xue Z, Xia G-S, Zhang L (2018) A survey on vision-based UAV navigation. Geo-spatial Inf Sci 21(1):21–32

    Article  Google Scholar 

  13. EUROCONTROL (1963) EUROCONTROL: airspace utilisation. https://www.eurocontrol.int/function/airspace-utilisation. Accessed 31 Jan 2021.

  14. EUROCONTROL (1963) EUROCONTROL: UAS no-fly areas. https://www.eurocontrol.int/tool/uas-no-fly-areas-directory-information-resources. Accessed 31 Jan 2021

  15. SESAR (2004) SESAR: CORUSXUAM objectives. https://www.sesarju.eu/projects/CORUSXUAM. Accessed 1 Feb 2021

  16. CORUSXUAM (2020) CORUSXUAM: description. https://corus-xuam.eu/about/. Accessed 1 Feb 2021

  17. Vergouw B, Nagel H, Bondt G, Custers B (2016) Drone technology: types, payloads, applications, frequency spectrum issues and future developments. In: The future of drone use, pp 21–45. Springer

  18. Goerzen C, Kong Z, Mettler B (2010) A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J Intell Rob Syst 57(1–4):65

    Article  MATH  Google Scholar 

  19. Yang L, Qi J, Xiao J, Yong X (2014) A literature review of UAV 3d path planning. In: Proceeding of the 11th world congress on intelligent control and automation, pp. 2376–2381. IEEE

  20. Pandey P, Shukla A, Tiwari R (2017) Aerial path planning using meta-heuristics: a survey. In: 2017 second international conference on electrical, computer and communication technologies (ICECCT), pp. 1–7. IEEE

  21. Zhao Y, Zheng Z, Liu Y (2018) Survey on computational-intelligence-based UAV path planning. Knowl-Based Syst 158:54–64

    Article  Google Scholar 

  22. Radmanesh M, Kumar M, Guentert PH, Sarim M (2018) Overview of path-planning and obstacle avoidance algorithms for UAVs: a comparative study. Unmanned Syst 6(02):95–118

    Article  Google Scholar 

  23. Aggarwal S, Kumar N (2020) Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges. Comput Commun 149:270–299

    Article  Google Scholar 

  24. Yang K, Keat Gan S, Sukkarieh S (2013) A gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV. Adv Robot 27(6):431–443

    Article  Google Scholar 

  25. Kothari M, Postlethwaite I (2013) A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees. J Intell Robot Syst 71(2):231–253

    Article  Google Scholar 

  26. Lin Y, Saripalli S (2014) Path planning using 3d dubins curve for unmanned aerial vehicles. In: 2014 international conference on unmanned aircraft systems (ICUAS), pp. 296–304. IEEE

  27. Xinggang W, Cong G, Yibo L (2014) Variable probability based bidirectional RRT algorithm for UAV path planning. In: The 26th Chinese control and decision conference (2014 CCDC), pp 2217–2222. IEEE

  28. Yang Hongji, Jia Qingzhong, Zhang Weizhong (2018) An environmental potential field based RRT algorithm for UAV path planning. In 2018 37th Chinese Control Conference (CCC), pages 9922–9927. IEEE,

  29. Zu W, Fan G, Gao Y, Ma Y, Zhang H, Zeng H (2018) Multi-UAVs cooperative path planning method based on improved RRT algorithm. In: 2018 IEEE international conference on mechatronics and automation (ICMA), pp 1563–1567. IEEE

  30. Sun Q, Li M, Wang T, Zhao C (2018) UAV path planning based on improved rapidly-exploring random tree. In: 2018 Chinese control and decision conference (CCDC), pp 6420–6424. IEEE

  31. Meng LI, Qinpeng SUN, Mengmei ZHU (2019) UAV 3-dimension flight path planning based on improved rapidly-exploring random tree. In: 2019 Chinese control and decision conference (CCDC), pp 921–925. IEEE

  32. Wen N, Zhao L, Xiaohong S, Ma P (2015) UAV online path planning algorithm in a low altitude dangerous environment. IEEE/CAA J Autom Sin 2(2):173–185

    Article  MathSciNet  Google Scholar 

  33. Lee D, Shim DH (2016) Path planner based on bidirectional spline-RRT\(^{*}\) for fixed-wing UAVs. In: 2016 international conference on unmanned aircraft systems (ICUAS), pp 77–86. IEEE

  34. Aguilar WG, Morales S, Ruiz H, Abad V (2017) RRT* gl based optimal path planning for real-time navigation of UAVs. In: International work-conference on artificial neural networks, pp 585–595. Springer

  35. Meng J, Pawar VM, Kay S, Li (2018) Angran UAV path planning system based on 3d informed RRT* for dynamic obstacle avoidance. In: 2018 IEEE international conference on robotics and biomimetics (ROBIO), pp 1653–1658. IEEE

  36. Mechali O, Xu L, Wei M, Benkhaddra I, Guo F, Senouci A (2019) A rectified RRT* with efficient obstacles avoidance method for UAV in 3d environment. In: 2019 IEEE 9th annual international conference on CYBER technology in automation, control, and intelligent systems (CYBER), pp 480–485. IEEE

  37. Bortoff SA (2000) Path planning for UAVs. In: Proceedings of the 2000 American control conference. ACC (IEEE Cat. No. 00CH36334), vol 1, pp 364–368. IEEE

  38. Chen X, Li G, Chen X (2017) Path planning and cooperative control for multiple UAVs based on consistency theory and voronoi diagram. In: 2017 29th Chinese control and decision conference (CCDC), pp 881–886. IEEE

  39. Baek J, Han SI, Han Y (2019) Energy-efficient UAV routing for wireless sensor networks. IEEE Trans Veh Technol 69(2):1741–1750

    Article  Google Scholar 

  40. Feng X, Murray AT (2018) Allocation using a heterogeneous space voronoi diagram. J Geogr Syst 20(3):207–226

    Article  Google Scholar 

  41. Chen X, Zhao M (2019) Collaborative path planning for multiple unmanned aerial vehicles to avoid sudden threats. In: 2019 Chinese automation congress (CAC), pp 2196–2201. IEE

  42. Moon S, Oh E, Shim DH (2013) An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments. J Intell Robot Syst 70(1-4):303–313

  43. Qian X, Peng C, Nong C, Xiang Z (2015) Dynamic obstacle avoidance path planning of UAVs. In: 2015 34th Chinese control conference (CCC), pp 8860–8865. IEEE

  44. Budiyanto A, Cahyadi A, Adji TB, Wahyunggoro O (2015) UAV obstacle avoidance using potential field under dynamic environment. In: 2015 international conference on control, electronics, renewable energy and communications (ICCEREC), pp 187–192. IEEE

  45. Chen Y, Luo G, Mei Y, Jian-qiao Yu, Xiao-long S (2016) UAV path planning using artificial potential field method updated by optimal control theory. Int J Syst Sci 47(6):1407–1420

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu Y, Zhao Y (2016) A virtual-waypoint based artificial potential field method for UAV path planning. In: 2016 IEEE Chinese guidance, navigation and control conference (CGNCC), pp 949–953. IEEE

  47. Mac TT, Copot C, Hernandez A, De Keyser R (2016) Improved potential field method for unknown obstacle avoidance using UAV in indoor environment. In: 2016 IEEE 14th international symposium on applied machine intelligence and informatics (SAMI), pages 345–350. IEEE

  48. Abeywickrama HV, Jayawickrama BA, He Y, Dutkiewicz E (2017) Algorithm for energy efficient inter-UAV collision avoidance. In: 2017 17th international symposium on communications and information technologies (ISCIT), pp 1–5. IEEE

  49. Sun J, Tang J, Lao S (2017) Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm. IEEE Access 5:18382–18390

    Article  Google Scholar 

  50. Woods AC, La HM (2017) A novel potential field controller for use on aerial robots. IEEE Trans Syst Man Cybern 49(4):665–676

    Article  Google Scholar 

  51. Zhiyang L, Tao J (2017) Route planning based on improved artificial potential field method. In: 2017 2nd Asia-Pacific conference on intelligent robot systems (ACIRS), pp 196–199. IEEE

  52. Dai J, Wang Y, Wang C, Ying J, Zhai J (2018) Research on hierarchical potential field method of path planning for UAVs. In: 2018 2nd IEEE advanced information management, communicates, electronic and automation control conference (IMCEC), pp 529–535. IEEE

  53. Bai W, Wu X, Xie Y, Wang Y, Zhao H, Chen K, Li Y, Hao Y (2018) A cooperative route planning method for multi-UAVs based-on the fusion of artificial potential field and b-spline interpolation. In 2018 37th Chinese control conference (CCC), pp 6733–6738. IEEE

  54. Feng Y, Wu Y, Cao H, Sun J (2018) UAV formation and obstacle avoidance based on improved apf. In: 2018 10th international conference on modelling, identification and control (ICMIC), pp 1–6. IEEE

  55. Yingkun Zhang (2018) Flight path planning of agriculture UAV based on improved artificial potential field method. In 2018 Chinese Control And Decision Conference (CCDC), pages 1526–1530. IEEE

  56. Abeywickrama HV, Jayawickrama BA, He Y, Dutkiewicz E (2018) Potential field based inter-UAV collision avoidance using virtual target relocation. In: 2018 IEEE 87th vehicular technology conference (VTC Spring), pp 1–5. IEEE

  57. D’Amato E, Mattei M, Notaro I (2019) Bi-level flight path planning of UAV formations with collision avoidance. J Intell Robot Syst 93(1–2):193–211

    Article  Google Scholar 

  58. D’Amato E, Notaro I, Blasi L, Mattei M (2019) Smooth path planning for fixed-wing aircraft in 3d environment using a layered essential visibility graph. In: 2019 international conference on unmanned aircraft systems (ICUAS), pp 9–18. IEEE

  59. Maini Parikshit, Sujit PB (2016) Path planning for a UAV with kinematic constraints in the presence of polygonal obstacles. In 2016 international conference on unmanned aircraft systems (ICUAS), pages 62–67. IEEE

  60. Wang J, Zhang YF, Geng L, Fuh JYH, Teo SH (2015) A heuristic mission planning algorithm for heterogeneous tasks with heterogeneous UAVs. Unmanned Syst 3(03):205–219

    Article  Google Scholar 

  61. Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical report

  62. Fortune S (1987) A sweepline algorithm for voronoi diagrams. Algorithmica 2(1):153–174

    Article  MathSciNet  MATH  Google Scholar 

  63. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous robot vehicles, pp 396–404. Springer

  64. Welzl E (1985) Constructing the visibility graph for n-line segments in o (n2) time. Inf Process Lett 20(4):167–171

    Article  MATH  Google Scholar 

  65. Dijkstra EW et al (1959) A note on two problems in connexion with graphs. 1 Numerische mathematik 1(1):269–271

    Article  MathSciNet  MATH  Google Scholar 

  66. Kavraki L, Latombe J-C (1994) Randomized preprocessing of configuration for fast path planning. In: Proceedings of the 1994 IEEE international conference on robotics and automation, pp 2138–2145. IEEE

  67. Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6(1):73–79

    Article  MathSciNet  MATH  Google Scholar 

  68. Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (Cat. No. 00CH37065), vol 2, pp 995–1001. IEEE

  69. Tang HB, Sun ZQ (2005) Parameter adaptive RRT-goalbias algorithm. Dyn Contin Discret Impuls Syst Ser B 1:381–386

    Google Scholar 

  70. Yershova A, Jaillet L, Siméon T, LaValle SM (2005) Dynamic-domain RRTs: Efficient exploration by controlling the sampling domain. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 3856–3861. IEEE

  71. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894

    Article  MATH  Google Scholar 

  72. Han X-A, Ma YC, Huang XL (2009) The cubic trigonometric bézier curve with two shape parameters. Appl Math Lett 22(2):226–231

    Article  MathSciNet  MATH  Google Scholar 

  73. Wei X, Fengyang D, Qingjie Z, Bing Z, Hongchang S (2015) A new fast consensus algorithm applied in rendezvous of multi-UAV. In: The 27th Chinese control and decision conference (2015 CCDC), pp 55–60. IEEE

  74. He L, Pan J, Xu J (2011) Reducing data collection latency in wireless sensor networks with mobile elements. In: 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS), pp 572–577. IEEE

  75. Mertens S (1996) Exhaustive search for low-autocorrelation binary sequences. J Phys A: Math Gen 29(18):L473

    Article  MathSciNet  MATH  Google Scholar 

  76. Sankar PV, Ferrari LA (1988) Simple algorithms and architectures for b-spline interpolation. IEEE Trans Pattern Anal Mach Intell 10(2):271–276

    Article  MATH  Google Scholar 

  77. Geng L, Zhang YF, Wang J, Fuh JYH, Teo SH (2014) Cooperative mission planning with multiple UAVs in realistic environments. Unmanned Syst 2(01):73–86

    Article  Google Scholar 

  78. Dong Z, Chen Z, Zhou R, Zhang R (2011) A hybrid approach of virtual force and a* search algorithm for UAV path re-planning. In: 2011 6th IEEE conference on industrial electronics and applications, pp 1140–1145. IEEE

  79. Wang Z, Liu L, Long T, Yu C, Kou J (2014) Enhanced sparse a* search for UAV path planning using dubins path estimation. In: Proceedings of the 33rd Chinese control conference, pp 738–742. IEEE

  80. Tianzhu R, Rui Z, Jie X, Zhuoning D (2016) Three-dimensional path planning of UAV based on an improved a* algorithm. In: 2016 IEEE Chinese guidance, navigation and control conference (CGNCC), pp 140–145. IEEE

  81. Chengjun Z, Xiuyun M (2017) Spare a* search approach for UAV route planning. In: 2017 IEEE international conference on unmanned systems (ICUS), pp 413–417. IEEE

  82. Chen T, Zhang G, Hu X, Xiao J (2018) Unmanned aerial vehicle route planning method based on a star algorithm. In: 2018 13th IEEE conference on industrial electronics and applications (ICIEA), pp 1510–1514. IEEE

  83. Zhang G, Hsu L-T (2019) A new path planning algorithm using a gnss localization error map for UAVs in an urban area. J Intell Robot Syst 94(1):219–235

    Article  Google Scholar 

  84. Primatesta S, Guglieri G, Rizzo A (2019) A risk-aware path planning strategy for UAVs in urban environments. J Intell Robot Syst 95(2):629–643

    Article  Google Scholar 

  85. Mardani A, Chiaberge M, Giaccone P (2019) Communication-aware UAV path planning. IEEE. Access 7:52609–52621

    Article  Google Scholar 

  86. Xueli W, Lei X, Zhen R, Xiaojing W (2020) Bi-directional adaptive a* algorithm toward optimal path planning for large-scale UAV under multi-constraints. IEEE Access 8:85431–85440

    Article  Google Scholar 

  87. Zhang Z, Jian W, Dai J, He C (2020) A novel real-time penetration path planning algorithm for stealth UAV in 3d complex dynamic environment. IEEE Access 8:122757–122771

    Article  Google Scholar 

  88. Lim D, Park J, Han D, Jang H, Park W, Lee D (2021) UAV path planning with derivative of the heuristic angle. Int J Aeronaut Space Sci 22(1):140–150

    Article  Google Scholar 

  89. Pohl I (1970) Heuristic search viewed as path finding in a graph. Artif Intell 1(3–4):193–204

    Article  MathSciNet  MATH  Google Scholar 

  90. Zhang Z, Jian W, Dai J, He C (2022) Optimal path planning with modified a-star algorithm for stealth unmanned aerial vehicles in 3d network radar environment. Proc Inst Mech Eng G 236(1):72–81

    Article  Google Scholar 

  91. Liu W, Zheng Z, Cai K-Y (2013) Bi-level programming based real-time path planning for unmanned aerial vehicles. Knowl-Based Syst 44:34–47

    Article  Google Scholar 

  92. Kang M, Liu Y, Ren Y, Zhao Y, Zheng Z (2017) An empirical study on robustness of UAV path planning algorithms considering position uncertainty. In: 2017 12th international conference on intelligent systems and knowledge engineering (ISKE), pp 1–6. IEEE

  93. Ahmed S, Mohamed A, Harras K, Kholief M, Mesbah S (2016) Energy efficient path planning techniques for UAV-based systems with space discretization. In: 2016 IEEE wireless communications and networking conference, pp 1–6. IEEE

  94. da Silva A, da Silva AM, Motta TCF, Júnior Onofre T, Williams BC (2017) Heuristic and genetic algorithm approaches for UAV path planning under critical situation. Int J Artif Intell Tools 26(01):1760008

  95. Freitas H, Faiçal BS, Vinicius CA, Ueyama J (2020) Use of UAVs for an efficient capsule distribution and smart path planning for biological pest control. Comput Electron Agric 173:105387

  96. De Filippis L, Guglieri G, Quagliotti F (2012) Path planning strategies for UAVs in 3d environments. J Intell Robot Syst 65(1–4):247–264

    Article  Google Scholar 

  97. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  98. Dong ZN, Chi P, Zhang RL, Chen ZJ (2009) The algorithms on three-dimension route plan based on virtual forces. J Syst Simul 20(S):387–392

    Google Scholar 

  99. Szczerba RJ, Galkowski P, Glicktein IS, Ternullo N (2000) Robust algorithm for real-time route planning. IEEE Trans Aerosp Electron Syst 36(3):869–878

    Article  Google Scholar 

  100. Guglieri G, Lombardi A, Ristorto G (2015) Operation oriented path planning strategies for rpas. Am J Sci Technol 2(6):1–8

    Google Scholar 

  101. Song R, Liu Y, Bucknall R (2019) Smoothed a* algorithm for practical unmanned surface vehicle path planning. Appl Ocean Res 83:9–20

    Article  Google Scholar 

  102. Afram A, Janabi-Sharifi F, Fung AS, Raahemifar K (2017) Artificial neural network (ann) based model predictive control (mpc) and optimization of hvac systems: A state of the art review and case study of a residential hvac system. Energy Build 141:96–113

    Article  Google Scholar 

  103. Liu X, Deng R, Wang J, Wang X (2014) Costar: A d-star lite-based dynamic search algorithm for codon optimization. J Theor Biol 344:19–30

    Article  MATH  Google Scholar 

  104. Marcotte P, Savard G (2005) Bilevel programming: a combinatorial perspective. In: Graph theory and combinatorial optimization, pp 191–217. Springer

  105. Kim Y, Da-Wei G, Postlethwaite I (2008) Real-time path planning with limited information for autonomous unmanned air vehicles. Automatica 44(3):696–712

    Article  MathSciNet  MATH  Google Scholar 

  106. Zheng Z, Shanjie W, Liu W, Cai K-Y (2011) A feedback based cri approach to fuzzy reasoning. Appl Soft Comput 11(1):1241–1255

    Article  Google Scholar 

  107. Schouwenaars T (2006) Safe trajectory planning of autonomous vehicles. PhD thesis, Massachusetts Institute of Technology

  108. Stützle T, Dorigo M et al (1999) Aco algorithms for the traveling salesman problem. Evol Algorithms Eng Comput Sci 4:163–183

    MATH  Google Scholar 

  109. Voudouris C, Tsang E (1999) Guided local search and its application to the traveling salesman problem. Eur J Oper Res 113(2):469–499

    Article  MATH  Google Scholar 

  110. Glover F (1989) Tabu search-part i. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  111. Yi-Chen D, Zhang M-X, Ling H-F, Zheng Y-J (2019) Evolutionary planning of multi-UAV search for missing tourists. IEEE Access 7:73480–73492

    Article  Google Scholar 

  112. Brintaki AN, Nikolos IK (2005) Coordinated UAV path planning using differential evolution. Oper Res Int Journal 5(3):487–502

    Article  Google Scholar 

  113. Mittal S, Deb K (2007) Three-dimensional offline path planning for UAVs using multiobjective evolutionary algorithms. In: 2007 IEEE congress on evolutionary computation, pp 3195–3202. IEEE

  114. Roberge V, Tarbouchi M, Labonté G (2012) Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans Industr Inf 9(1):132–141

    Article  Google Scholar 

  115. Zhang X, Duan H (2015) An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning. Appl Soft Comput 26:270–284

    Article  Google Scholar 

  116. Li J, Deng G, Luo C, Lin Q, Yan Q, Ming Z (2016) A hybrid path planning method in unmanned air/ground vehicle (UAV/ugv) cooperative systems. IEEE Trans Veh Technol 65(12):9585–9596

    Article  Google Scholar 

  117. Adhikari D, Kim E, Reza H (2017) A fuzzy adaptive differential evolution for multi-objective 3d UAV path optimization. In: 2017 IEEE congress on evolutionary computation (CEC), pp 2258–2265. IEEE

  118. Fu Z, Yu J, Xie G, Chen Y, Mao Y (2018) A heuristic evolutionary algorithm of UAV path planning. In: Wireless communications and mobile computing

  119. Dai R, Fotedar S, Radmanesh M, Kumar M (2018) Quality-aware UAV coverage and path planning in geometrically complex environments. Ad Hoc Netw 73:95–105

    Article  Google Scholar 

  120. Xiao C, Zou Y, Li S (2019) UAV multiple dynamic objects path planning in air-ground coordination using receding horizon strategy. In: 2019 3rd international symposium on autonomous systems (ISAS), pp 335–340. IEEE

  121. Yang Q, Liu J, Li L (2020) Path planning of UAVs under dynamic environment based on a hierarchical recursive multiagent genetic algorithm. In: 2020 IEEE congress on evolutionary computation (CEC), pp 1–8. IEEE

  122. Hayat S, Yanmaz E, Bettstetter C, Brown TX (2020) Multi-objective drone path planning for search and rescue with quality-of-service requirements. Auton Robot 44(7):1183–1198

    Article  Google Scholar 

  123. Chawra VK, Gupta GP (2020) Multiple UAV path-planning for data collection in cluster-based wireless sensor network. In: 2020 first international conference on power, control and computing technologies (ICPC2T), pp 194–198. IEEE

  124. Sujit PB, Beard R (2009) Multiple UAV path planning using anytime algorithms. In: 2009 American control conference, pp 2978–2983. IEEE

  125. Zhang C, Zhen Z, Wang D, Li M (2010) UAV path planning method based on ant colony optimization. In: 2010 Chinese control and decision conference, pp 3790–3792. IEEE

  126. Yangguang F, Ding M, Zhou C (2011) Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV. IEEE Trans Syst Man Cybern Part A 42(2):511–526

    Google Scholar 

  127. Liu Y, Zhang X, Guan X, Delahaye D (2016) Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization. Aerosp Sci Technol 58:92–102

    Article  Google Scholar 

  128. Cekmez U, Ozsiginan M, Sahingoz OK (2016) Multi colony ant optimization for UAV path planning with obstacle avoidance. In: 2016 international conference on unmanned aircraft systems (ICUAS), pp 47–52. IEEE

  129. Yao P, Wang H (2017) Dynamic adaptive ant lion optimizer applied to route planning for unmanned aerial vehicle. Soft Comput 21(18):5475–5488

    Article  Google Scholar 

  130. Wu K, Xi T, Wang H (2017) Real-time three-dimensional smooth path planning for unmanned aerial vehicles in completely unknown cluttered environments. In: TENCON 2017-2017 IEEE Region 10 Conference. IEEE

  131. Yong BC, Mei YSY, Xiao-Long JQS, Nuo X (2017) Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm. Neurocomputing 266:445–457

    Article  Google Scholar 

  132. Huang C, Fei J (2018) UAV path planning based on particle swarm optimization with global best path competition. Int J Pattern Recognit Artif Intell 32(06):1859008

    Article  MathSciNet  Google Scholar 

  133. Tian G, Zhang L, Bai X, Wang B (2018) Real-time dynamic track planning of multi-UAV formation based on improved artificial bee colony algorithm. In: 2018 37th Chinese control conference (CCC), pp 10055–10060. IEEE

  134. Jianfa W, Wang H, Li N, Peng Y, Yu H, Hemeng Y (2018) Path planning for solar-powered UAV in urban environment. Neurocomputing 275:2055–2065

    Article  Google Scholar 

  135. Zhang X, Xingyang L, Jia S, Li X (2018) A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning. Appl Soft Comput 70:371–388

    Article  Google Scholar 

  136. Pandey P, Shukla A, Tiwari R (2018) Three-dimensional path planning for unmanned aerial vehicles using glowworm swarm optimization algorithm. Int J Syst Assur Eng Manag 9(4):836–852

    Google Scholar 

  137. Goel U, Varshney S, Jain A, Maheshwari S, Shukla A (2018) Three dimensional path planning for UAVs in dynamic environment using glow-worm swarm optimization. Procedia Comput Sci 133:230–239

    Article  Google Scholar 

  138. Zhang D, Duan H (2018) Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning. Neurocomputing 313:229–246

    Article  Google Scholar 

  139. Sun X, Pan S, Cai C, Chen Y, Chen J (2018) Unmanned aerial vehicle path planning based on improved intelligent water drop algorithm. In: 2018 eighth international conference on instrumentation & measurement, computer, communication and control (IMCCC), pp 867–872. IEEE

  140. Muliawan IW, Ma’Sum MA, Alfiany N, Jatmiko W (2019) UAV path planning for autonomous spraying task at salak plantation based on the severity of plant disease. In: 2019 IEEE international conference on cybernetics and computational intelligence (CyberneticsCom), pp 109–113. IEEE

  141. Dewangan RK, Shukla A, Godfrey WW (2019) Three dimensional path planning using grey wolf optimizer for UAVs. Appl Intell 49(6):2201–2217

    Article  Google Scholar 

  142. Cai Y, Zhao H, Li M, Huang H (2019) 3d real-time path planning based on cognitive behavior optimization algorithm for UAV with tlp model. Clust Comput 22(2):5089–5098

    Article  Google Scholar 

  143. Zhang C, Chenxi H, Feng J, Liu Z, Zhou Y, Zhang Z (2019) A self-heuristic ant-based method for path planning of unmanned aerial vehicle in complex 3-d space with dense u-type obstacles. IEEE Access 7:150775–150791

    Article  Google Scholar 

  144. Wang X, Zhao H, Han T, Zhou H, Li C (2019) A grey wolf optimizer using gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem. Appl Soft Comput 78:240–260

    Article  Google Scholar 

  145. Zhang S, Luo Q, Zhou Y (2017) Hybrid grey wolf optimizer using elite opposition-based learning strategy and simplex method. Int J Comput Intell Appl 16(02):1750012

    Article  Google Scholar 

  146. Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with lévy flight for optimization tasks. Appl Soft Comput 60:115–134

    Article  Google Scholar 

  147. Gupta S, Deep K (2019) A novel random walk grey wolf optimizer. Swarm Evol Comput 44:101–112

    Article  Google Scholar 

  148. Viktorin A, Pluhacek M, Senkerik R (2016) Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on cec2014 benchmark set. In: 2016 IEEE congress on evolutionary computation (CEC), pp 4797–4803. IEEE

  149. Chen X, Tianfield H, Mei C, Wenli D, Liu G (2017) Biogeography-based learning particle swarm optimization. Soft Comput 21(24):7519–7541

    Article  Google Scholar 

  150. Ghambari S, Rahati A (2018) An improved artificial bee colony algorithm and its application to reliability optimization problems. Appl Soft Comput 62:736–767

    Article  Google Scholar 

  151. Liu C, Fan L (2016) A hybrid evolutionary algorithm based on tissue membrane systems and cma-es for solving numerical optimization problems. Knowl-Based Syst 105:38–47

    Article  Google Scholar 

  152. Yue L, Chen H (2019) Unmanned vehicle path planning using a novel ant colony algorithm. EURASIP J Wirel Commun Netw 2019(1):136

    Article  Google Scholar 

  153. Li B, Qi X, Baoguo Yu, Liu L (2019) Trajectory planning for UAV based on improved aco algorithm. IEEE Access 8:2995–3006

    Article  Google Scholar 

  154. Luo Q, Wang H, Zheng Y, He J (2020) Research on path planning of mobile robot based on improved ant colony algorithm. Neural Comput Appl 32(6):1555–1566

    Article  Google Scholar 

  155. Shikai Shao Yu, Peng CH, Yun D (2020) Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Trans 97:415–430

    Article  Google Scholar 

  156. Tian D, Shi Z (2018) Mpso: Modified particle swarm optimization and its applications. Swarm Evol Comput 41:49–68

    Article  Google Scholar 

  157. Mohamed E, Alaa T (2018) Hassanien Aboul Ella (2018) Bezier curve based path planning in a dynamic field using modified genetic algorithm. J Comput Sci 25:339–350

    Article  Google Scholar 

  158. Yang LIU, Zhang X, Zhang Yu, Xiangmin GUAN (2019) Collision free 4d path planning for multiple UAVs based on spatial refined voting mechanism and pso approach. Chin J Aeronaut 32(6):1504–1519

    Article  Google Scholar 

  159. Mahanti A, Bagchi A (1985) And/or graph heuristic search methods. J ACM (JACM) 32(1):28–51

    Article  MathSciNet  MATH  Google Scholar 

  160. Yang Z, Fang Z, Li P (2016) Bio-inspired collision-free 4d trajectory generation for UAVs using tau strategy. J Bionic Eng 13(1):84–97

    Article  Google Scholar 

  161. Yang L, Guo J, Liu Y (2020) Three-dimensional UAV cooperative path planning based on the mp-cgwo algorithm. Int J Innov Comput Inf Control 16:991–1006

    Google Scholar 

  162. Phung MD, Phuc Ha Q (2021) Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl Soft Comput 107:107376

    Article  Google Scholar 

  163. Fu Y, Ding M, Zhou C, Cai C, Sun Y (2009) Path planning for UAV based on quantum-behaved particle swarm optimization. In: MIPPR 2009: medical imaging, parallel processing of images, and optimization techniques, vol 7497, p 74970B. International Society for Optics and Photonics

  164. Wei-Min Z, Shao-Jun L, Feng Q (2008) \(\theta\)-pso: a new strategy of particle swarm optimization. J Zhejiang Univ Sci A 9(6):786–790

    Article  MATH  Google Scholar 

  165. Zhou X, Gao F, Fang X, Lan Z (2021) Improved bat algorithm for UAV path planning in three-dimensional space. IEEE Access 9:20100–20116

    Article  Google Scholar 

  166. Pan J-S, Dao T-K, Kuo M-Y, Horng, M-F, et al. (2014) Hybrid bat algorithm with artificial bee colony. In: Intelligent data analysis and its applications, vol II, pp 45–55. Springer,

  167. Wang G, Guo L, Duan H, Liu L, Wang H (2012) A bat algorithm with mutation for ucav path planning. The Sci World J

  168. Hu ZH (2011) Research on some key techniques of UAV path planning based on intelligent optimization algorithm. Nanjing University of Aeronautics and Astronautics, Nanjing, China

    Google Scholar 

  169. Lei L, Shiru Q (2012) Path planning for unmanned air vehicles using an improved artificial bee colony algorithm. In: Proceedings of the 31st Chinese control conference, pp 2486–2491. IEEE

  170. Chen Y, Jianqiao Yu, Mei Y, Wang Y, Xiaolong S (2016) Modified central force optimization (mcfo) algorithm for 3d UAV path planning. Neurocomputing 171:878–888

    Article  Google Scholar 

  171. Formato RA (2008) Central force optimization: a new nature inspired computational framework for multidimensional search and optimization. In: Nature inspired cooperative strategies for optimization (NICSO 2007), pp 221–238. Springer

  172. Zabinsky ZB, et al (2009) Random search algorithms. Department of Industrial and Systems Engineering, University of Washington, USA

  173. Kumar P, Garg S, Singh A, Batra S, Kumar N, You I (2018) Mvo-based 2-d path planning scheme for providing quality of service in UAV environment. IEEE Internet Things J 5(3):1698–1707

    Article  Google Scholar 

  174. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  MathSciNet  Google Scholar 

  175. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  176. Jain G, Yadav G, Prakash D, Shukla A, Tiwari R (2019) Mvo-based path planning scheme with coordination of UAVs in 3-d environment. J Comput Sci 37:101016

    Article  Google Scholar 

  177. Yaoming ZHOU, Yu SU, Anhuan XIE, Lingyu KONG (2021) A newly bio-inspired path planning algorithm for autonomous obstacle avoidance of UAV. Chin J Aeronaut

  178. Chen Y, Pi D, Yue X (2021) Neighborhood global learning based flower pollination algorithm and its application to unmanned aerial vehicle path planning. Expert Syst Appl 170:114505

    Article  Google Scholar 

  179. Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, pp 240–249. Springer

  180. Singh D, Singh U, Salgotra R (2018) An extended version of flower pollination algorithm. Arab J Sci Eng 43(12)

  181. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    Google Scholar 

  182. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  183. Askarzadeh A, Rezazadeh A (2011) An innovative global harmony search algorithm for parameter identification of a pem fuel cell model. IEEE Trans Ind Electron 59(9):3473–3480

    Article  Google Scholar 

  184. Mirjalili S, Zaiton MHS (2010) A new hybrid psogsa algorithm for function optimization. In: 2010 international conference on computer and information application, pp 374–377. IEEE

  185. Alihodzic A (2016) Fireworks algorithm with new feasibility-rules in solving UAV path planning. In: 2016 3rd international conference on soft computing & machine intelligence (ISCMI), pp 53–57. IEEE

  186. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010), pp 65–74. Springer

  187. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  188. Wu J, Yi J, Gao L, Li X (2017) Cooperative path planning of multiple UAVs based on ph curves and harmony search algorithm. In: 2017 IEEE 21St international conference on computer supported cooperative work in design (CSCWD), pp 540–544. IEEE

  189. Binol H, Bulut E, Akkaya K, Guvenc I (2018) Time optimal multi-UAV path planning for gathering its data from roadside units. In: 2018 IEEE 88th Vehicular Technol Conf (VTC-Fall), pp 1–5. IEEE

  190. Nawaz M, Emory Enscore E Jr, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1):91–95

    Article  Google Scholar 

  191. Liu H, Zhang P, Bin H, Moore P (2015) A novel approach to task assignment in a cooperative multi-agent design system. Appl Intell 43(1):162–175

    Article  Google Scholar 

  192. Poongothai M, Rajeswari A (2016) A hybrid ant colony tabu search algorithm for solving task assignment problem in heterogeneous processors. In: Proceedings of the international conference on soft computing systems, pp 1–11. Springer

  193. Abdullahi M, Ngadi MA et al (2016) Symbiotic organism search optimization based task scheduling in cloud computing environment. Futur Gener Comput Syst 56:640–650

    Article  Google Scholar 

  194. Bourgault F, Furukawa T, Durrant-Whyte HF (2003) Optimal search for a lost target in a bayesian world. In: Field and service robotics, pp 209–222. Springer

  195. Waharte S, Trigoni N (2010) Supporting search and rescue operations with UAVs. In: 2010 international conference on emerging security technologies, pp 142–147. IEEE

  196. Lo C-C, Yu S-W (2015) A two-phased evolutionary approach for intelligent task assignment & scheduling. In: 2015 11th international conference on natural computation (ICNC), pp 1092–1097. IEEE

  197. Yao P, Wang H, Ji H (2017) Gaussian mixture model and receding horizon control for multiple UAV search in complex environment. Nonlinear Dyn 88(2):903–919

    Article  Google Scholar 

  198. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  199. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  200. Zadeh LA (1996) Fuzzy sets. In: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, pp 394–432. World Scientific

  201. Zhao J, Wang L (2011) Center based genetic algorithm and its application to the stiffness equivalence of the aircraft wing. Expert Syst Appl 38(5):6254–6261

    Article  MathSciNet  Google Scholar 

  202. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), vol 1, pp 325–331. IEEE

  203. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms, pp 169–178. Springer,

  204. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer

  205. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  206. He S, Wu QH, Wen JY, Saunders JR, Paton RC (2004) A particle swarm optimizer with passive congregation. Biosystems 78(1–3):135–147

    Article  Google Scholar 

  207. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  208. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  209. Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3(2):87–124

    Article  Google Scholar 

  210. Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-inspired Comput 1(1–2):71–79

    Article  Google Scholar 

  211. Zhu W, Duan H (2014) Chaotic predator-prey biogeography-based optimization approach for ucav path planning. Aerosp Sci Technol 32(1):153–161

    Article  Google Scholar 

  212. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  213. Li M, Zhao H, Weng X, Han T (2016) Cognitive behavior optimization algorithm for solving optimization problems. Appl Soft Comput 39:199–222

    Article  Google Scholar 

  214. Nikolos IK, Zografos ES, Brintaki AN (2007) UAV path planning using evolutionary algorithms. In: Innovations in intelligent machines-1, pp 77–111. Springer

  215. Wu J, Shin S, Kim C-G, Kim S-D (2017) Effective lazy training method for deep q-network in obstacle avoidance and path planning. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC), pp 1799–1804. IEEE

  216. Yan C, Xiang X, Wang C (2019) Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments. J Intell Robot Syst 1–13

  217. Shiri H, Park J, Bennis M (2020) Remote UAV online path planning via neural network based opportunistic control. IEEE Wirel Commun Lett

  218. Chen Y, Zu W, Fan G, Chang H (2014) Unmanned aircraft vehicle path planning based on svm algorithm. In: Foundations and practical applications of cognitive systems and information processing, pp 705–714. Springer

  219. Yoo J, Kim HJ, Johansson KH (2017) Path planning for remotely controlled UAVs using gaussian process filter. In: 2017 17th international conference on control, automation and systems (ICCAS), pp 477–482. IEEE

  220. Carron A, Todescato M, Carli R, Schenato L, Pillonetto G (2016) Machine learning meets kalman filtering. In: 2016 IEEE 55th conference on decision and control (CDC), pp 4594–4599. IEEE

  221. Koo KM, Lee KR, Cho SR, Joe I (2018) A UAV path planning method using polynomial regression for remote sensor data collection. In: Advances in computer science and ubiquitous computing, pp 428–433. Springer

  222. Radmanesh R, Kumar M, French D, Casbeer D (2020) Towards a pde-based large-scale decentralized solution for path planning of UAVs in shared airspace. Aerosp Sci Technol pp 105965

  223. Ragi S, Chong EKP (2013) UAV path planning in a dynamic environment via partially observable markov decision process. IEEE Trans Aerosp Electron Syst 49(4):2397–2412

    Article  Google Scholar 

  224. Zhang B, Liu W, Mao Z, Liu J, Shen L (2014) Cooperative and geometric learning algorithm (cgla) for path planning of UAVs with limited information. Automatica 50(3):809–820

    Article  MathSciNet  MATH  Google Scholar 

  225. Shan-Jie W, Zheng Z, Cai K (2011) Real-time path planning for unmanned aerial vehicles using behavior coordination and virtual goal. Control Theory Appl 28(1):131–136

    Google Scholar 

  226. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292

    MATH  Google Scholar 

  227. Yijing Z, Zheng Z, Xiaoyi Z, Yang L (2017) Q learning algorithm based UAV path learning and obstacle avoidence approach. In: 2017 36th Chinese control conference (CCC), pp 3397–3402. IEEE

  228. Challita U, Saad W, Bettstetter C (2018) Deep reinforcement learning for interference-aware path planning of cellular-connected UAVs. In 2018 IEEE international conference on communications (ICC), pp 1–7. IEEE

  229. Luo W, Tang Q, Fu C, Eberhard P (2018) Deep-sarsa based multi-UAV path planning and obstacle avoidance in a dynamic environment. In: International conference on sensing and imaging, pp 102–111. Springer

  230. Yan C, Xiang X (2018) A path planning algorithm for UAV based on improved q-learning. In: 2018 2nd international conference on robotics and automation sciences (ICRAS), pp 1–5. IEEE

  231. Zhang T, Huo X, Chen S, Yang B, Zhang G (2018) Hybrid path planning of a quadrotor UAV based on q-learning algorithm. In: 2018 37th Chinese control conference (CCC), pp 5415–5419. IEEE

  232. Xie R, Meng Z, Zhou Y, Ma Y, Zhe W (2020) Heuristic q-learning based on experience replay for three-dimensional path planning of the unmanned aerial vehicle. Sci Prog 103(1):0036850419879024

    Article  Google Scholar 

  233. Xie R, Meng Z, Wang L, Li H, Wang K, Zhe W (2021) Unmanned aerial vehicle path planning algorithm based on deep reinforcement learning in large-scale and dynamic environments. IEEE Access 9:24884–24900

    Article  Google Scholar 

  234. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing atari with deep reinforcement learning. arXiv:1312.5602

  235. Hausknecht M, Stone P (2015) Deep recurrent q-learning for partially observable mdps. In: 2015 aaai fall symposium series

  236. Cui Z, Wang Y (2021) UAV path planning based on multi-layer reinforcement learning technique. IEEE Access 9:59486–59497

    Article  Google Scholar 

  237. Pierre DM, Zakaria N, Pal AJ (2012) Self-organizing map approach to determining compromised solutions for multi-objective UAV path planning. In: 2012 12th international conference on control automation robotics and vision (ICARCV), pp 995–1000. IEEE

  238. Choi Y, Jimenez H, Mavris DN (2017) Two-layer obstacle collision avoidance with machine learning for more energy-efficient unmanned aircraft trajectories. Robot Auton Syst 98:158–173

    Article  Google Scholar 

  239. Ester M, Kriegel H-P, Sander J, Xiaowei X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd 96:226–231

    Google Scholar 

  240. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533

    Article  Google Scholar 

  241. Chen X, Chen X (2014) The UAV dynamic path planning algorithm research based on voronoi diagram. In: The 26th chinese control and decision conference (2014 ccdc), pp 1069–1071. IEEE

  242. Zhang D, Xu Y, Yao X (2018) An improved path planning algorithm for unmanned aerial vehicle based on RRT-connect. In: 2018 37th Chinese control conference (CCC), pp 4854–4858. IEEE

  243. Wang H, Sun Z, Li D, Jin Q (2019) An improved RRT based 3-d path planning algorithm for UAV. In: 2019 Chinese control and decision conference (CCDC), pp 5514–5519. IEEE

  244. Shen Hong, Li Ping (2020) Unmanned aerial vehicle (UAV) path planning based on improved pre-planning artificial potential field method. In 2020 Chinese Control And Decision Conference (CCDC), pages 2727–2732. IEEE

  245. Debnath SK, Omar R, Bagchi S, Nafea M, Naha RK, Sabudin EN (2020) Energy efficient elliptical concave visibility graph algorithm for unmanned aerial vehicle in an obstacle-rich environment. In: 2020 IEEE international conference on automatic control and intelligent systems (I2CACIS), pp 129–134. IEEE

  246. Latip NBA, Omar R, Debnath SK (2017) Optimal path planning using equilateral spaces oriented visibility graph method. Int J Electr Comput Eng 7(6):3046

    Google Scholar 

  247. Chandler P, Rasmussen S, Pachter M (2000) UAV cooperative path planning. In AIAA guidance, navigation, and control conference and exhibit, p 4370

  248. Yan F, Zhuang Y, Xiao J (2012) 3d prm based real-time path planning for UAV in complex environment. In: 2012 IEEE international conference on robotics and biomimetics (ROBIO), pp 1135–1140. IEEE

  249. Xue Qian, Cheng Peng, Cheng Nong (2014) Offline path planning and online replanning of UAVs in complex terrain. In Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, pages 2287–2292. IEEE

  250. Ahmad Z, Ullah F, Tran C, Lee S (2017) Efficient energy flight path planning algorithm using 3-d visibility roadmap for small unmanned aerial vehicle. Int J Aerosp Eng

  251. Naazare M, Ramos D, Wildt J, Schulz D (2019) Application of graph-based path planning for UAVs to avoid restricted areas. In: 2019 IEEE international symposium on safety, security, and rescue robotics (SSRR), pp 139–144. IEEE

  252. Yaohong Q, Zhang Y, Zhang Y (2018) A global path planning algorithm for fixed-wing UAVs. J Intell Robot Syst 91(3–4):691–707

    Google Scholar 

  253. Pehlivanoglu YV (2012) A new vibrational genetic algorithm enhanced with a voronoi diagram for path planning of autonomous UAV. Aerosp Sci Technol 16(1):47–55

    Article  Google Scholar 

  254. Pehlivanoglu YV, Baysal O, Hacioglu A (2007) Path planning for autonomous UAV via vibrational genetic algorithm. Aircraft Eng Aerosp Technol

  255. Michalewicz Z, Michalewicz Z (1996) Genetic algorithms+ data structures= evolution programs. Springer, New York

    Book  MATH  Google Scholar 

  256. da Arantes M, da Arantes J, Toledo CFM, Williams BC (2016) A hybrid multi-population genetic algorithm for UAV path planning. In: Proceedings of the genetic and evolutionary computation conference 2016, pp 853–860. ACM

  257. Blackmore L, Ono M, Williams BC (2011) Chance-constrained optimal path planning with obstacles. IEEE Trans Rob 27(6):1080–1094

    Article  Google Scholar 

  258. Bliek1ú C, Bonami P, Lodi A (2014) Solving mixed-integer quadratic programming problems with ibm-cplex: a progress report. In: Proceedings of the twenty-sixth RAMP symposium, pp 16–17

  259. Girija S, Joshi A (2019) Fast hybrid pso-apf algorithm for path planning in obstacle rich environment. IFAC-PapersOnLine 52(29):25–30

    Article  MathSciNet  Google Scholar 

  260. Roberge V, Tarbouchi M, Allaire F (2014) Parallel hybrid metaheuristic on shared memory system for real-time UAV path planning. Int J Comput Intell Appl 13(02):1450008

    Article  Google Scholar 

  261. Ghambari S, Idoumghar L, Jourdan L, Lepagnot J (2019) An improved tlbo algorithm for solving UAV path planning problem. In: 2019 IEEE symposium series on computational intelligence (SSCI), pp 2261–2268. IEEE

  262. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  263. Ali ZA, Zhangang H, Zhengru D (2020) Path planning of multiple UAVs using mmaco and de algorithm in dynamic environment. Meas Control 0020294020915727

  264. Ge F, Li K, Han Y, Xu W, et al (2020) Path planning of UAV for oilfield inspections in a three-dimensional dynamic environment with moving obstacles based on an improved pigeon-inspired optimization algorithm. Appl Intell 1–18

  265. Yan Y, Liang Y, Zhang H, Zhang W, Feng H, Wang B, Liao Q (2019) A two-stage optimization method for unmanned aerial vehicle inspection of an oil and gas pipeline network. Pet Sci 16(2):458–468

    Article  Google Scholar 

  266. Phung MD, Quach CH, Dinh TH, Ha Q (2017) Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. Autom Constr 81:25–33

    Article  Google Scholar 

  267. Wang G-G, Chu HCE, Mirjalili S (2016) Three-dimensional path planning for ucav using an improved bat algorithm. Aerosp Sci Technol 49:231–238

    Article  Google Scholar 

  268. Zhang B, Duan H (2015) Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment. IEEE/ACM Trans Comput Biol Bioinf 14(1):97–107

    Article  MathSciNet  Google Scholar 

  269. Das PK, Behera HS, Panigrahi BK (2016) A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol Comput 28:14–28

    Article  Google Scholar 

  270. Zhang T, Duan H (2017) A modified consensus algorithm for multi-UAV formations based on pigeon-inspired optimization with a slow diving strategy. J Intell Syst (in China) 12(4):570–581

    Google Scholar 

  271. Qu Chengzhi, Gai Wendong, Zhang Jing, Zhong Maiying (2020) A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowledge-Based Systems, pp 105530

  272. Van Laarhoven Peter JM, Aarts Emile HL (1987) Simulated annealing. In: Simulated annealing: theory and applications, pp 7–15. Springer

  273. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  274. Chengzhi Q, Gai W, Zhong M, Zhang J (2020) A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Appl Soft Comput 89:106099

    Article  Google Scholar 

  275. Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80

    Article  Google Scholar 

  276. Long W, Jiao J, Liang X, Tang M (2018) Inspired grey wolf optimizer for solving large-scale function optimization problems. Appl Math Model 60:112–126

    Article  MathSciNet  MATH  Google Scholar 

  277. Kumar V, Kumar D (2017) An astrophysics-inspired grey wolf algorithm for numerical optimization and its application to engineering design problems. Adv Eng Softw 112:231–254

    Article  Google Scholar 

  278. Pan Y, Yang Y, Li W (2021) A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV. IEEE Access 9:7994–8005

    Article  Google Scholar 

  279. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Directorate General for Scientific Research and Technological Development (DG-RSDT) of Algeria; and the “ADI 2021” project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Meraihi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with any person(s) or Organization(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A: Appendix

A: Appendix

In the present appendix, we gather in a table the set of acronyms used in this paper and their meanings.

Acronym

Explanation

ABC

Artificial Bee Colony

ACO

Ant Colony Optimization

AGASA

Self Adaptive Genetic Simulated Annealing algorithm

APF

Artificial Potential Field

APF-IRP

Artificial Potential Field Improved Rolling Plan

AGOA

Adaptive Grasshopper Optimization Algorithm

aHJB

Hamilton Jacobi Bellman

ALO

Ant Lion Optimizer

ARE

Adaptive and Random Exploration

A*

A-Star

AS-N

Ant Colony Optimization with punitive measures

AT-PP

Average Throughput Path planning

ASTS

Ant System Tabu Search

BA

Bat Algorithm

BAA*

Bidirectional Adaptive A-star

BBO

Biogeography Based Optimization

BLP

Bi-Level Programming

BS

Base Station

CBGA

Center Based Genetic Algorithm

CBPSO

Chaos Based initialization Particle Swarm Optimization

CC-RRT

Chance Constraint Rapidly-exploring Random Tree

CFO

Central Force Optimization

CGLA

Cooperative and Geometric Learning Algorithm

CIPSO

Comprehensively Particle Swarm Optimization

CPSO

Constrained Particle Swarm Optimization

CS

Cuckoo Search

DA

Dragonfly Algorithm

DAALO

Dynamic Adaptive Ant Lion Optimizer

DBSCAN

Density Based Spatial Clustering of Application with Noise

DDRRT

Dynamic Domain Rapidly-exploring Random Tree

DE

Differential Evolution

Deep RL ESN

Deep Reinforcement Learning Echo State Network

Deep Sarsa

Deep State action reward state action

DELC

Differential Evolution with Level Comparison

DPSO

Discrete Particle Swarm Optimization

DQN

Deep Q Network

DRL

Deep Reinforcement Learning

D3QN

Dueling Double Deep Q Networks

Dubins SAS

Dubins Sparse A-Star

ECoVG

Elliptical Concave Visibility Graph

\(\epsilon\)DE

Constrained Differential Evolution

EEGWO

Exploration Enhanced Grey Wolf Optimizer

ESOVG

Equilateral Space Oriented Visibility Graph

ePFC

Extended Potential Field Controller

EPF-RRT

Environmental Potential Field Rapidly-exploring Random Tree

FA

Firefly Algorithm

FA-DE

Fuzzy Adaptive Differential Evolution

FBCRI

Feedback Based CRI

FDFR

First Detect First Reserve

FOA

Fruit fly Optimization Algorithm

FVF

Fuzzy Virtual Force

FWA

Firework Algorithm

GA

Genetic Algorithm

GA-LRO

Genetic Algorithm-Local Rolling Optimization

GBPSO

Global Best Particle Swarm Optimization

GEDGWO

Gaussian Estimation of Distribution Grey Wolf Optimizer

GH

Greedy Heuristic

GLS

Guided Local Search

GNSS

Global Navigation Satellite System

GP

Gaussian Process

GP-RRT

Gaussian Process Rapidly-exploring Random Tree

GSO

Glowworm Swarm Optimization

GTSP

Generalized Traveling Salesman Problem

GWO

Grey Wolf Optimizer

HDDRRT

Heuristic Dynamic Domain Rapidly-exploring Random Tree

HGA

Hybrid Genetic Algorithm

HPF

Hierarchical Potential Field

HR-MAGA

Hierarchical Recursive Multi Agent Genetic Algorithm

HSGWO-MSOS

Hybrid Simplified Grey Wolf Optimizer-Modified Symbiotic Organism Search

HVFA

Hybrid Virtual Force A* search

IABC

Improved Artificial Bee Colony

IBA

Intelligent BAT Algorithm

ICA

Imperialist Competitive Algorithm

IFFO

Improved Fruit fly Optimization

IGWO

Improved Grey Wolf Optimizer

IITD

Improved Intelligent Water Drop algorithm

ITD

Intelligent Water Drop algorithm

IPS

Improved Path Smoothing

IRRT

Improved Rapidly-exploring Random Tree

IRRT*

Informed Rapidly-exploring Random Tree-Star

IWOA

Improved Whale Optimization Algorithm

IRRTC

Improved Rapidly-exploring Random Tree Connect

LCPSO

Linear varying Coefficient Particle Swarm Optimization

LEVG

Layered Essential Visibility Graph

LKH

Lin Kernighan

LRTA-Star

Learning Real Time A-star

LVPSO

Linear varying maximum Velocity Particle Swarm Optimization

MACO

Modified Ant Colony Optimization

MCFO

Modified Central Force Optimization

mDELC

improved Differential Evolution with Level Comparison

MFO

Moth Flame Optimization

MFOA

Multi-swarm Fruit fly Optimization Algorithm

MGA

Modified Genetic Algorithm

MGOA

Modified Grey Wolf Algorithm

mHJB

Opportunistic Hamilton Jacobi Bellman

MHS

Modified Harmony Search

MILP

Mixed Integer Linear Programming

MMACO-DE

Maximum Minimum Ant Colony Optimization Differential Evolution

MMAS

Maximum Minimum Ant System

MPC

Model Predictive Control

MP-CGWO

Multi Population-Chaotic Grey Wolf Optimizer

MPFM

Modified Potential Field Method

MPGA

Multi-Population Genetic Algorithm

MT-PP

Maximum Throughput Path planning

mVD

Modified Voronoi Diagram

mVGA

Multi-frequency Vibrational Genetic Algorithm

mVGA\(^v\)

Multi-frequency Vibrational Genetic Algorithm with voronoi

MVO

Multi-Verse Optimizer

MWPS

Modified Wolf Packet Search

NBO

Nominal Belief-state Optimization

NFZ-DDRRT

No-Fly Zone Dynamic Domain Rapidly-exploring Random Tree

NSGA

Non-dominated Sorting Genetic Algorithm

NBGA

Neighborhood Based Genetic Algorithm

OGCA

Obstacle-free Graph Construction Algorithm

OGSA

Obstacle-free Graph Search Algorithm

oHJB

Opportunistic Hamilton Jacobi Bellman

OPP

Optimal Path Planning

PDE

Partial Differential Equation

PH

Pythagorean Hodograph

PIO

Pigeon Inspired Optimization

PIOFOA

Pigeon Inspired Optimization Fruit fly Optimization Algorithm

P-MAGA

Path planning Multi-Agent Genetic Algorithm

PMPSO

Position Mutation Particle Swarm Optimization

POMDP

Partially Observable Markov Decision Process

PPPIO

Predator Prey Pigeon Inspired Optimization

PRM

Probabilistic Road Map

PSO

Particle Swarm Optimization

PSO-APF

Particle Swarm Optimization-Artificial Potential Field

PSO-GA

Particle Swarm Optimization -Genetic Algorithm

PSOGSA

Particle Swarm Optimization Gravitational Search Algorithm

PSOPC

Particle Swarm Optimizer with Passive Congregation

QoS

Quality of Service

QPSO

Quantum Particle Swarm Optimization

RBF-ANN

Radial Basis Functions Artificial Neural Networks

RGA

Regular Genetic Algorithm

RGV

Reduced Visibility Graph

RHC

Receding Horizon Control

RLGWO

Reinforcement learning Grey Wolf Optimizer

RRT

Rapidly-exploring Random Tree

RRTC

Rapidly-exploring Random Tree Connect

RRT*

Rapidly-exploring Random Tree-Star

RRT* G

Rapidly-exploring Random Tree-Star Goal

RRT* GL

RRT Goal Limit

RRT* L

Rapidly-exploring Random Tree-Star Limit

RS

Random Search

RSU

Road Site Unit

RVW

Rendez-Vous Waypoints

Sarsa

State action reward state action

SA

Simulated Annealing algorithm

SADE

Self Adaptive Differential Evolution

SAS

Sparse A* Search

SCA

Sine Cosine Algorithm

SCPIO

Social Class Pigeon Inspired Optimization

SDPIO

Slow Diving Pigeon Inspired Optimization

SH

Short Horizon algorithm

SHA

Self Heuristic Ant

SHC

Short Horizon Cooperative algorithm

SICQ

Simultaneous Inform and Connect with Quality of service

SIC+

Simultaneous Inform and Connect following Quality of service

SOM

Self Organisation Map

SOMR

Surface Of Minimum Risk

SOS

Symbiotic Organism Search

SVM

Support Vector Machine

TADDRRT

Threat Assessment based Dynamic Domain Rapidly-exploring Random Tree

TARRT*

Threat Assessment based RRT* Rapidly-exploring Random Tree-Star

\(\theta\)-MAFOA

\(\theta\)-Mutation Adaptation Fruit Fly Optimization Algorithm

\(\theta\)-QPSO

Phase-encoded Quantum Particle Swarm Optimization algorithm

\(\theta\)-PSO

Phase-encoded Particle Swarm Optimization algorithm

TLBO

Teaching Learning Based Optimization

TLP-COA

Tri Level Programming Cognitive behavior Optimization Algorithm

TSP

Traveling Salesman Problem

UAV

Unmanned Aerial Vehicle

UGV

Unmanned Ground Vehicle

VD

Voronoi Diagram

VGA

Vibrational Genetic Algorithm

VPB-RRT

Variable Probability based bidirectional Rapidly-exploring Random Tree

WOA

Whale Optimization Algorithm

WPS

Wolf Packet Search

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Saadi, A., Soukane, A., Meraihi, Y. et al. UAV Path Planning Using Optimization Approaches: A Survey. Arch Computat Methods Eng 29, 4233–4284 (2022). https://doi.org/10.1007/s11831-022-09742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09742-7

Navigation