Skip to main content
Log in

Integrating omics analysis of salt stress-responsive genes in rice

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The detrimental effect of high salinity on crop production is a serious problem. However, the number of genes with known functions relating to salinity tolerance is very limited in rice. To effectively address this limitation, selection of useful candidate genes and identification of major regulatory factors through global approaches are necessary. To this end, we used three data series of affymetrix array data produced with salt-treated samples from NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and identified 653 rice genes commonly differentially expressed under three salt-stress conditions. While evaluating the quality of selected candidate genes for salt-stress responses, Gene ontology enrichment analysis revealed that responses to salt and water stresses of biological process category are highly overrepresented in salt-stress conditions. In addition, the major salt stress-responsive metabolism process and regulatory gene modules are classified through MapMan analysis, and detailed elements for further studies are suggested. Based on this, we proposed a salt stress-responsive signaling pathway in rice. The functional analysis of the main signal transduction and transcription regulation factors identified in this pathway will shed light on a novel regulatory metabolism process that can be manipulated to develop crops with enhanced salinity tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad P, Azooz MM, Prasad MNV (2013) Salt Stress in plants: signaling, omics and adaptations. Springer-Verlag, New York, pp 220

  • Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM et al (2011) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acid Res 39:D1005–D1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao H, Guo S, Xu Y, Jiang K, Jones AM, Chong K (2011) Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa). J Exp Bot 62:4595–4604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao P, Jung KH, Choi D, Hwang D, Zhu J, Ronald PC (2012) The rice oligonucleotide array database: an atlas of rice gene expression. Rice 5:17

    Article  PubMed  Google Scholar 

  • Chandran AKN, Jung KH (2014) Resources for systems biology in rice. J Plant Biol 57:80–92

    Article  CAS  Google Scholar 

  • Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chu VT, Gottardo R, Raftery AE, Burmgarner RE, Yeung KY (2008) MeV+ R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis. Genome Biol 9:R118

    Article  PubMed Central  PubMed  Google Scholar 

  • Cotsaftis O, Plett D, Johnson AA, Walia H, Wilson C, Ismail AM, Close TJ, Tester M, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol Plant 4:25–41

    Article  CAS  PubMed  Google Scholar 

  • Dai Yin C, Luo YH, Min S, Da L, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810

    Article  Google Scholar 

  • De Vleesschauwer D, Yang Y, Cruz CV, Höfte M (2010) Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol 152:2036–2052

    Article  PubMed Central  PubMed  Google Scholar 

  • DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inositol 1, 4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126:759–769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS ONE 7:e45117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Dure L III, Verma D (1993) The Lea proteins of higher plants. Control of Plant Gene Expression. CRC Press, Boca Raton, pp 325–335

    Google Scholar 

  • Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140:1070–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  CAS  PubMed  Google Scholar 

  • Gangappa SN, Botto JF (2014) The BBX family of plant transcription factors. Trends Plant Sci 19:460–470

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Chen H, Jiang J-F, Zhao Y, Xu M-L, Xu Y-Y, Tan K-h XuZ-H, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135:1502–1513

    Article  PubMed Central  PubMed  Google Scholar 

  • Hossain MA, Lee Y, Cho J-I, Ahn C-H, Lee S-K, Jeon J-S, Kang H, Lee C-H, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Y, Qin F, Huang L, Sun Q, Li C, Zhao Y, Zhou D-X (2009) Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Biophys Res Commun 388:266–271

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Yang X, Wang M-M, Tang H-J, Ding L-Y, Shen Y, Zhang H-S (2007) A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochim Biophys Acta 1769:220–227

    Article  CAS  PubMed  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim C-S, Shi W, Zhu J-K (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Jang S, Lee B, Kim C, Kim S-J, Yim J, Han J-J, Lee S, Kim S-R, An G (2003) The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol 53:357–372

    Article  CAS  PubMed  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Do Choi Y, Kim M, Reuzeau C, Kim J-K (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang S-Y, Ma A, Ramamoorthy R, Ramachandran S (2013) Genome-Wide Survey on Genomic Variation, Expression Divergence, and Evolution in Two Contrasting Rice Genotypes under High Salinity Stress. Genome Biol Evol 5:2032–2050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung K-H, Ko H-J, Nguyen MX, Kim S-R, Ronald P, An G (2012) Genome-wide identification and analysis of early heat stress responsive genes in rice. J Plant Biol 55:458–468

    Article  CAS  Google Scholar 

  • Jung KH, An G (2012) Application of MapMan and RiceNet Drives Systematic Analyses of the Early Heat Stress Transcriptome in Rice Seedlings. J Plant Biol 55:436–449

    Article  CAS  Google Scholar 

  • Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Pandey GK (2014) Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium 56:81–95

    Article  CAS  PubMed  Google Scholar 

  • Kim S-H, Kim J-Y, Kim S-J, An K-S, An G, Kim S-R (2007) Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.). Plant Cell Rep 26:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Kumar M, Kim S-R, Ryu H, Cho Y-G (2013) Insights into genomics of salt stress response in rice. Rice 6:27

    Article  PubMed  Google Scholar 

  • Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. In: Shanker A (ed) Abiotic Stress Response in Plants––Physiological, Biochemical and Genetic Perspectives. InTech, Rijeka, pp 261–296

    Google Scholar 

  • Laurie S, Halford NG (2001) The role of protein kinases in the regulation of plant growth and development. Plant Growth Regul 34:253–265

    Article  CAS  Google Scholar 

  • Liu WY, Wang MM, Huang J, Tang HJ, Lan HX, Zhang HS (2009) The OsDHODH1 gene is involved in salt and drought tolerance in rice. J Integr Plant Biol 51:825–833

    Article  CAS  PubMed  Google Scholar 

  • Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JA, Chen L-J, Yu S-M (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lyzenga WJ, Stone SL (2011) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63:599–616

    Article  PubMed  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium-and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  CAS  PubMed  Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C, Francia E, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley. Plant Mol Biol 55:399–416

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Oh S-J, Song SI, Kim YS, Jang H-J, Kim SY, Kim M, Kim Y-K, Nahm BH, Kim J-K (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics 284:121–136

    Article  CAS  PubMed  Google Scholar 

  • Park S-Y, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y, Lee S-K, Jeong S-W, Seo HS, Koh H-J (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabbani G, Rahman A, Mainuddin K (2013) Salinity-induced loss and damage to farming households in coastal Bangladesh. Int J Glob Warm 5:400–415

    Article  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabbani MG, Rahman AA, Islam N (2010) Climate change and sea level rise: issues and challenges for coastal communities in the Indian Ocean region. In: Michel D, Pandya A (eds) Coastal zone and climate change. The Henry L Stimson Center, Washington, pp 17–29

  • Saika H, Matsumura H, Takano T, Tsutsumi N, Nakazono M (2006) A point mutation of Adh1 gene is involved in the repression of coleoptile elongation under submergence in rice. Breed Sci 56:69–74

    Article  CAS  Google Scholar 

  • Shen Y, Zhang Y, Yang C, Lan Y, Liu L, Liu S, Chen Z, Ren G, Wan J (2012) Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice. Planta 235:433–441

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Sun S-J, Guo S-Q, Yang X, Bao Y-M, Tang H-J, Sun H, Huang J, Zhang H-S (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang Y, Li M, Chen Y, Wu P, Wu G, Jiang H (2011) Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol 168:1952–1959

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Thumma BR, Sharma N, Southerton SG (2012) Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection. BMC Genomics 13:364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Ismail AM, Close TJ, Cui X (2009) Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress. BMC Genomics 10:398

    Article  PubMed Central  PubMed  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang N, Xiao B, Xiong L (2011) Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol 168:2212–2224

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu D-Q, Huang J, Guo S-Q, Yang X, Bao Y-M, Tang H-J, Zhang H-S (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto E, J-i Yonemaru, Yamamoto T, Yano M (2012) OGRO: The Overview of functionally characterized Genes in Rice online database. Rice 5:1–10

    Article  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17. 0 and OsHsp23. 7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    Article  CAS  PubMed  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from “the Next-Generation BioGreen 21 Program (PJ01100401)” Rural Development Administration, Republic of Korea and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2006040 to KHJ).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hong Jung.

Electronic supplementary material

Fig. S1. Graphic expression of 653 salt-stress-inducible genes.

Fig. S2. Heatmap analysis of salt-stress-responsive rice genes and Arabidopsis genes showing conserved ortholog genes between rice and Arabidopsis.

Fig. S3. MapMan analysis associated with 871 Arabidopsis salt-stress-inducible genes. Individual elements in the regulation overview (A), metabolism overview (B), transcription (C) and ubiquitin-dependent degradation overview (D) are represented by red rectangular boxes. The detailed information is listed in Table S8.

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 11927 kb)

Supplementary material 2 (EPS 1358 kb)

Supplementary material 3 (EPS 2768 kb)

Supplementary material 4 (XLSX 120 kb)

Supplementary material 5 (XLSX 154 kb)

Supplementary material 6 (XLSX 21 kb)

Supplementary material 7 (XLSX 28 kb)

Supplementary material 8 (XLSX 18 kb)

Supplementary material 9 (XLSX 43 kb)

Supplementary material 10 (XLSX 11 kb)

Supplementary material 11 (XLSX 80 kb)

Supplementary material 12 (XLSX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SW., Jeong, HJ. & Jung, KH. Integrating omics analysis of salt stress-responsive genes in rice. Genes Genom 37, 645–655 (2015). https://doi.org/10.1007/s13258-015-0293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0293-2

Keywords

Navigation