Skip to main content
Log in

Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum lycopersicum L.)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Potassium transporters belonging to the KT/HAK/KUP family play an important role in plant growth, development, mineral nutrition, and stress adaptation. In this study, we identified 19 KT/HAK/KUP family genes in tomato, distributed on 10 chromosomes, by using bioinformatics methods. A complete overview of the KT/HAK/KUP (SlHAK) genes in tomato is presented, including chromosome location, phylogeny, gene structure, and evolution pattern. Phylogenetic analysis of 19 SlHAK proteins suggested that group IV of the KT/HAK/KUP family is absent in the tomato genome. In addition, five pairs of segmental duplicated paralogs and two pairs of tandem duplicated paralogs were identified in the tomato KT/HAK/KUP family. This suggests that segmental duplication is predominant for the expansion of the SlHAK genes. Calculation of the approximate dates of duplication events using the synonymous substitution rate indicated that the segmental duplication of the KT/HAK/KUP genes in tomato originated 35.89–62.77 million years ago. Adaptive evolution analysis showed that purifying selection contributed to the evolution of segmental duplicated pairs. Furthermore, Tajima’s relative rate test indicated that all segmental duplicated pairs evolved at similar rates. As a first step toward a genome-wide analysis of the KT/HAK/KUP gene family in tomato, our results provide valuable information for understanding the function and evolution of the KT/HAK/KUP gene family in tomato and other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aleman F, Nieves-Cordones M, Martinez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52:1603–1612

    Article  CAS  PubMed  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed Central  PubMed  Google Scholar 

  • Cai X, Zhang Y, Zhang C, Zhang T, Hu T, Ye J, Zhang J, Wang T, Li H, Ye Z (2013) Genome-wide analysis of plant-specific Dof transcription factor family in tomato. J Integr Plant Biol 55:552–566

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39:834–846

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zhang D, Cheng Z, Keller B, Ling HQ (2009) A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181:1183–1193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davies C, Shin R, Liu W, Thomas MR, Schachtman DP (2006) Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot 57:3209–3216

    Article  CAS  PubMed  Google Scholar 

  • Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L (2003) AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J Exp Bot 54:781–788

    Article  CAS  PubMed  Google Scholar 

  • Desbrosses G, Kopka C, Ott T, Udvardi MK (2004) Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Mol Plant Microbe Interact 17:789–797

    Article  CAS  PubMed  Google Scholar 

  • Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garciadeblas B, Benito B, Rodríguez-Navarro A (2002) Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50:623–633

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomez-Porras JL, Riaño-Pachón DM, Benito B, Haro R, Sklodowski K, Rodríguez-Navarro A, Dreyer I (2012) Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front Plant Sci 3:167

    Article  PubMed Central  PubMed  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family-multiple functions. Ann Bot 99:1035–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong LZ, Lian XM, Zhang QF (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics 280:437–452

    Article  CAS  PubMed  Google Scholar 

  • He C, Cui K, Duan A, Zeng Y, Zhang J (2012) Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol 2:1996–2004

    Article  PubMed Central  PubMed  Google Scholar 

  • Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 111:346–356

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Banzhaf W (2008) Nonsynonymous to synonymous substitution ratio ka/ks: measurement for rate of evolution in evolutionary computation. In: Rudolph G, Jansen T, Lucas S, Poloni C, Beume N (eds) PPSN 2008. Lecture notes in computer science, vol 5199. Springer, Heidelberg, pp 448–457

  • Hyun TK, Eom SH, Kim J-S (2011) Genomic analysis and gene structure of the two invertase families in the domesticated apple (Malus × domestica Borkh.). Plant Omics 4:391–399

    CAS  Google Scholar 

  • Jaquinod M, Villiers F, KieVer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jo Y, Hyun TK (2011) Genome-wide identification of antioxidant component biosynthetic enzymes: comprehensive analysis of ascorbic acid and tocochromanols biosynthetic genes in rice. Comput Biol Chem 35:261–268

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, de Pamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez-Cordero MA, Martínez V, Rubio F (2004) Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56:413–421

    Article  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed Central  PubMed  Google Scholar 

  • Mosimann M, Goshima S, Wenzler T, Lüscher A, Uozumi N, Mäser P (2010) A Trk/HKT-type K+ transporter from Trypanosoma brucei. Eukaryot Cell 9:539–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Martínez-Cordero MA, Martínez V, Rubio F (2007) An NH4 +-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci 172:273–280

    Article  CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279:55355–55361

    Article  CAS  PubMed  Google Scholar 

  • Olinski RP, Lundin LG, Hallbook F (2006) Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family. Mol Biol Evol 23:10–22

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot 59:595–607

    Article  CAS  PubMed  Google Scholar 

  • Quintero FJ, Blatt MR (1997) A new family of KC transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415:206–211

    Article  CAS  PubMed  Google Scholar 

  • Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24:703–711

    Article  CAS  PubMed  Google Scholar 

  • Senn ME, Rubio F, Banuelos MA, Rodriguez-Navarro A (2001) Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276:44563–44569

    Article  CAS  PubMed  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  CAS  PubMed  Google Scholar 

  • Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482–1493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tajima F (1993) Simple methods for testing molecular clock hypothesis. Genetics 135:599–607

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  PubMed  Google Scholar 

  • von Schantz M, Jenkins A, Archer SN (2006) Evolutionary history of the vertebrate period genes. J Mol Evol 62:701–707

    Article  CAS  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots: evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang M, Yuan D, Gao W, Li Y, Tan J, Zhang X (2013) A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls. PLoS ONE 8:e72082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waters S, Gilliham M, Hrmova M (2013) Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci 14:7660–7680

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  PubMed  Google Scholar 

  • Yang ZF, Gao QS, Sun CS, Li WJ, Gu SL, Xu CW (2009) Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). J Genet Genomics 36:161–172

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang J, Chen Y, Li R, Wang H, Wei J (2012) Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Mol Biol Rep 39:8465–8473

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology and a grant from the Next-Generation BioGreen 21 Program (SSAC grant PJ009495), Rural Development Administration, Republic of Korea.

Conflict of interest

The authors declare no conflict of interest in the content of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Sung Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13258_2014_174_MOESM1_ESM.tif

Protein domain of the KT/HAK/KUP gene family in tomato. K+ transporter domain (k_trans; PF02705) is shown as boxes based on identification by Pfam

13258_2014_174_MOESM2_ESM.tif

Phylogenetic analysis of the KT/HAK/KUP gene family in tomato (Sl), Arabidopsis thaliana (At) and rice (Os, Oryza sativa L)

Regulatory sequences and cis-elements in the SlHAK promoter regions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyun, T.K., Rim, Y., Kim, E. et al. Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum lycopersicum L.). Genes Genom 36, 365–374 (2014). https://doi.org/10.1007/s13258-014-0174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0174-0

Keywords

Navigation