Skip to main content
Log in

Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

High-affinity K+ uptake in plants plays a crucial role in K+ nutrition and different systems have been postulated to contribute to the high-affinity K+ uptake. The results presented here with pepper (Capsicum annum) demonstrate that a HAK1-type transporter greatly contributes to the high-affinity K+ uptake observed in roots. Pepper plants starved of K+ for 3 d showed high-affinity K+ uptake (K m of 6 μM K+) that was very sensitive to NH and their roots expressed a high-affinity K+ transporter, CaHAK1, which clusters in group I of the KT/HAK/KUP family of transporters. When expressed in yeast (Saccharomyces cerevisiae), CaHAK1 mediated high-affinity K+ and Rb+ uptake with K m values of 3.3 and 1.9 μ M, respectively. Rb+ uptake was competitively inhibited by micromolar concentrations of NH and Cs+, and by millimolar concentrations of Na+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, S. J., Shin, R. and Schachtman, D. P. 2004. Expression ofKT/KUP genes in Arabidopsis and the role of root hairs inK+ uptake. Plant. Physiol. 134: 1135–1145.

    PubMed  Google Scholar 

  • Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. and Gaber, R. F. 1992. Functional expression of a probableArabidopsis thaliana potassium channel in Saccharomycescerevisiae. Proc. Natl. Acad. Sci. USA 89: 3736–3740.

    PubMed  Google Scholar 

  • Armengaud, P., Breitling, R. and Amtmann, A. 2004. Thepotassium-dependent transcriptome of Arabidopsis reveals aprominent role of jasmonic acid in nutrient signaling. PlantPhysiol. (Epub ahead of print)

  • Banuelos, M. A., Garciadeblas, B., Cubero, B. and Rodriguez-Navarro, A. 2002. Inventory and functional characterizationof the HAK potassium transporters of rice. Plant Physiol. 130: 784–795.

    PubMed  Google Scholar 

  • Brunelli, J. P. and Pall, M. L. 1993. A series of yeast shuttlevectors for expression of cDNAs and other DNA-sequences. Yeast 9: 1299–1308.

    PubMed  Google Scholar 

  • Epstein, E. 1973. Mechanisms of ion transport through plantcell membranes. Int. Rev. Cytol. 34: 123–168.

    Google Scholar 

  • Flowers, T. J. and La¨uchli, A. 1983. Sodium versus potassium: substitution and compartmentation. In: A. La¨uchli, R. L. Bieleski, (Eds. ), Inorganic Plant Nutrition, Vol. 15B. Springer-Verlag, Berlin, pp. 651–681.

    Google Scholar 

  • Gerendas, J., Zhu, Z. J., Bendixen, R., Ratcliffe, R. G. and Sattelmacher, B. 1997. Physiological and biochemical processesrelated to ammonium toxicity in higher plants. ZPflanz. Bodenkunde 160: 239–251.

    Google Scholar 

  • Glass, A. 1975. The regulation of potassium absorption inbarley roots. Plant Physiol. 56: 377–380.

    Google Scholar 

  • Greenway, H. and Munns, R. 1980. Mechanism of salttolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149–190.

    Google Scholar 

  • Haro, R., Sainz, L., Rubio, F. and Rodriguez-Navarro, A. 1999. Cloning of two genes encoding potassium transportersin Neurospora crassa and expression of the correspongingcDNAs in Saccharomyces cerevisiae. Mol. Microbiol. 31: 511–520.

    PubMed  Google Scholar 

  • Hirsch, R. E., Lewis, B. D., Spalding, E. P. and Sussman, M. R. 1998. A role for the AKT1 potassium channel in plant nutrition. Science 280: 918–21.

    PubMed  Google Scholar 

  • Kaya, C. and Higgs, D. 2003. Supplementary potassium nitrateimproves salt tolerance in bell pepper plants. J. Plant Nutr. 26: 1367–1382.

    Google Scholar 

  • Kaya, C., Higgs, D., Ince, F., Amador, B. M., Cakir, A. and Sakar, E. 2003. Ameliorative effects of potassium phosphateon salt-stressed pepper and cucumber. J. Plant Nutr. 26: 807–820.

    Google Scholar 

  • Maas, E. V., Hoffman, G. J. 1977. Crop salt tolerance-currentassessment. J. Irrig. Drainage Div. 103: 115–134.

    Google Scholar 

  • Maathuis, F. J. M. and Sanders, D. 1992. Plant membranetransport. Curr. Opin. Cell Biol. 4: 661–669.

    PubMed  Google Scholar 

  • Marini, A. M., SoussiBoudekou, S., Vissers, S. and Andre, B. 1997. A family of ammonium transporters in Saccharomycescerevisiae. Mol. Cell. Biol. 17: 4282–4293.

    PubMed  Google Scholar 

  • Maser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., Talke, I. N., Amtmann, A., Maathuis, F. J., Sanders, D., Harper, J. F., Tchieu, J., Gribskov, M., Persans, M. W., Salt, D. E., Kim, S. A. and Guerinot, M. L. 2001. Phylogenetic relationships within cation transporterfamilies of Arabidopsis. Plant Physiol. 126: 1646–1667.

    PubMed  Google Scholar 

  • Rodriguez-Navarro, A. and Ramos, J. 1984. Dual system forpotassium transport in Saccharomyces cerevisiae. J. Bacteriol. 159: 940–945.

    PubMed  Google Scholar 

  • Rodr?´guez-Navarro, A. 2000. Potassium transport in fungi and plants. Biochim. Biophys. Acta 1469: 1–30.

    PubMed  Google Scholar 

  • Rubio, F., Gassmann, W. and Schroeder, J. I. 1995. Sodium driven potassium uptake by the plant potassium transporterHKT1 and mutations conferring salt tolerance. Science 270: 1660–1663.

    PubMed  Google Scholar 

  • Rubio, F., Santa-Maria, G. E. and Rodr?´guez-Navarro, A. 2000. Cloning of Arabidopsis and barley cDNAs encodingHAK potassium transporters in root and shoot cells. Physiol. Plant. 109: 34–43.

    Google Scholar 

  • Rubio, F., Schwarz, M., Gassmann, W. and Schroeder, J. I. 1999. Genetic selection of mutations in the high affinity K+transporter HKT1 that define functions of a loop site forreduced Na+ permeability and increased Na+ tolerance. J. Biol. Chem. 274: 6839–6847.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. MolecularCloning: A laboratory Manual. Cold Spring Harbor LaboratoryPress, Cold Spring Harbor, NY.

    Google Scholar 

  • Santa-Mar?´a, G. E., Danna, C. H. and Czibener, C. 2000. High affinity potassium transport in barley roots. Ammoniumsensitive and-insensitive pathways. Plant Physiol. 123: 297–306.

    PubMed  Google Scholar 

  • Santa-Mar?´a, G. E., Rubio, F., Dubcovsky, J. and Rodriguez-Navarro, A. 1997. The HAK1 gene of barley is a member ofa large gene family and encodes a high-affinity potassiumtransporter. Plant Cell 9: 2281–2289.

    PubMed  Google Scholar 

  • Searle, P. L. 1984. The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst109: 549–568.

  • Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J. M., Gaymard, F. and Grignon, C. 1992. Cloning and expression in yeast of a plant potassium ion transport system. Science 256: 663–665.

    PubMed  Google Scholar 

  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194: 3–21.

    PubMed  Google Scholar 

  • Shin, R. and Schachtman, D. P. 2004. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 101: 8827–8832.

    PubMed  Google Scholar 

  • Spalding, E. P., Hirsch, R. E., Lewis, D. R., Qi, Z., Sussman, M. R. and Lewis, B. D. 1999. Potassium uptake supportingplant growth in the absence of AKT1 channel activity: inhibition by ammonium and stimulation by sodium. J. Gen. Physiol. 113: 909–18.

    PubMed  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.

    PubMed  Google Scholar 

  • Very, A. A. and Sentenac, H. 2003. Molecular mechanisms andregulation of K+ transport in higher plants. Ann. Rev. PlantBiol. 54: 575–603.

    Google Scholar 

  • Walker, D. J., Leigh, R. A. and Miller, A. J. 1996. Potassiumhomeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 93: 10510–10514.

    PubMed  Google Scholar 

  • Wang, Y. H., Garvin, D. F. and Kochian, L. V. 2002. Rapidinduction of regulatory and transporter genes in response tophosphorus, potassium, and iron deficiencies in tomatoroots. Evidence for cross talk and root/rhizosphere-mediatedsignals. Plant Physiol. 130: 1361–1370.

    PubMed  Google Scholar 

  • Xu, G. H., Wolf, S. and Kafkafi, U. 2002. Ammonium onpotassium interaction in sweet pepper. J. Plant Nutr. 25: 719–734.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Cordero, M.A., Martínez, V. & Rubio, F. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56, 413–421 (2004). https://doi.org/10.1007/s11103-004-3845-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-3845-4

Navigation