Skip to main content
Log in

In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü Lake, Turkey: insights into a hypersaline-adapted dehalogenase

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Halogenated compounds represent potential long-term threats to human well-being and health and, therefore, the quest for microorganisms capable of degrading these hazardous substances merits urgent consideration. We have isolated a novel dehalogenase-producing bacterium from the hypersaline environment of Tuz Gölü Lake, Turkey and subsequently identified this isolate as Pseudomonas halophila HX. Under optimal culture conditions (pH 8.0, 15% NaCl, 30 °C, 200 rpm, 96 h culture time), the strain almost completely degraded (99.3%) 2,2-dichloropropionic acid (20 mM). The dehalogenase gene (dehHX) of the bacterium was amplified by PCR, and the deduced amino acid sequence of the DehHX was found to belong to a Group I dehalogenase and to share an 82% sequence identity to the dehalogenase DehI of Pseudomonas putida strain PP3. Interestingly, the pI of DehHX was more acidic (pI 3.89) than those of the non-halophilic dehalogenases (average measured pI 5.95). Homology-based structural modeling revealed that the surface of DehHX was unusually negatively charged due to the higher presence of acidic residues, which accounts for the uncommonly low pI seen in DehHX and explains the mechanism of adaptation that contributes to the exceptional halotolerance of the enzyme. The excess surface acidic residues were beneficial in enhancing the water-binding capacity, a crucial feature for preserving the stability and solubility of DehHX in highly saline conditions. In summary, we suggest that bio-prospecting for halogenated compound-degrading microorganisms in highly saline environments is a practical and safe strategy for the bioremediation of contaminated coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul Hamid AA, Tengku Abdul Hamid TH, Abdul Wahab R, Omar MSS, Huyop F (2015) An S188V mutation alters substrate specificity of non-stereospecific α-Haloalkanoic acid Dehalogenase E (DehE). PLoS One 10:e0121687. doi:10.1371/journal.pone.0121687

    Article  PubMed Central  Google Scholar 

  • Altın TB, Barak B, Altın BN (2012) Change in precipitation and temperature amounts over three decades in central Anatolia, Turkey. Atmos Clim Sci 2:107. doi:10.4236/acs.2012.21013

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baati H, Amdouni R, Gharsallah N, Sghir A, Ammar E (2010) Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr Microbiol 60:157–161. doi:10.1007/s00284-009-9516-6

    Article  CAS  PubMed  Google Scholar 

  • Badejo AC, Badejo AO, Shin KH, Chai YG (2013) A gene expression study of the activities of aromatic ring-cleavage dioxygenases in Mycobacterium gilvum PYR-GCK to changes in salinity and pH during pyrene degradation. PLoS One 8:e58066. doi:10.1371/journal.pone.0058066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagherbaigi S, Gicana RG, Lamis RJ, Nemati M, Huyop F (2013) Characterisation of Arthrobacter sp. S1 that can degrade α and β-haloalkanoic acids isolated from contaminated soil. Ann Microbiol 63:1363–1369. doi:10.1007/s13213-012-0595-4

    Article  CAS  Google Scholar 

  • Barth PT, Bolton L, Thomson JC (1992) Cloning and partial sequencing of an operon encoding two Pseudomonas putida haloalkanoate dehalogenases of opposite stereospecificity. J Bacteriol 174:2612–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2013) Effects of Microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.) Environ Sci Technol 47:593–600. doi:10.1021/es302763x

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. doi:10.1093/nar/gku340

  • Birbir M, Ogan A, Calli B, Mertoglu B (2004) Enzyme characteristics of extremely Halophilic Archaeal Community in Tuzkoy Salt Mine, Turkey. World J Microbiol Biotechnol 20:613–621. doi:10.1023/B:WIBI.0000043185.06176.b8

    Article  CAS  Google Scholar 

  • Birbir M, Calli B, Mertoglu B, Bardavid RE, Oren A, Ogmen MN, Ogan A (2007) Extremely halophilic Archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacik salterns. World J Microbiol Biotechnol 23:309–316. doi:10.1007/s11274-006-9223-4

    Article  CAS  Google Scholar 

  • Birnbaum LS, Fenton SE (2003) Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect 111:389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete MJ, Ferrer J, Pire C, Esclapez J, Rice DW (2006) Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci U S A 103:4846–4851. doi:10.1073/pnas.0508854103

  • Castillo-Carvajal LC, Sanz-Martín JL, Barragán-Huerta BE (2014) Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut Res 21:9578–9588. doi:10.1007/s11356-014-3036-z

    Article  CAS  Google Scholar 

  • Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431. doi:10.1007/s13213-012-0543-3

    Article  CAS  Google Scholar 

  • Chen J, Wong MH, Wong YS, Tam NFY (2008) Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Mar Pollut Bull 57:695–702. doi:10.1016/j.marpolbul.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Yoshida T, Ito N, Nishimura H, Imada C, Yasuda H, Sako Y (2009) Isolation of a bacterium possessing a haloacid dehalogenase from a marine sediment core. Microbes Environ 24:276–279. doi:10.1264/jsme2.ME09123

    Article  PubMed  Google Scholar 

  • Chua EM, Shimeta J, Nugegoda D, Morrison PD, Clarke BO (2014) Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environ Sci Technol 48:8127–8134. doi:10.1021/es405717z

    Article  CAS  PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. doi:10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colwell RR, Grigorova R (eds) (1987) Current methods for classification and identification of microorganisms. Methods in microbiology, vol. 19. CABI, Wallingford. doi:10.1002/jobm.3620290610

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890. doi:10.1093/nar/16.22.10881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosman ET, Horel JD (2009) MODIS-derived surface temperature of the Great salt Lake. Remote Sens Environ 113:73–81. doi:10.1016/j.rse.2008.08.013

    Article  Google Scholar 

  • DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 40:82–92

    Google Scholar 

  • Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79:145–153. doi:10.1002/bit.10318

    Article  PubMed  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte CM, Holmer M, Olsen Y, Soto D, Marbà N, Guiu J, Black K, Karakassis I (2009) Will the oceans help feed humanity? Bioscience 59:967–976. doi:10.1525/bio.2009.59.11.8

  • Dundas IE (1977) Physiology of the Halobacteriaceae. In: Rose H, Tempest DW (eds) Advances in microbiology and physiology, vol 15. A.P., London, pp 85–120

  • Eriksson M, Ka J-O, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67:5107–5112. doi:10.1128/AEM.67.11.5107-5112.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faller A, Schleifer KH (1981) Modified oxidase and benzidine tests for separation of staphylococci from micrococci. J Clin Microbiol 13:1031–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fetzner S (2010) Aerobic degradation of halogenated Aliphatics. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 865–885. doi:10.1007/978-3-540-77587-4_62

    Chapter  Google Scholar 

  • Frolow F, Harel M, Sussman JL, Mevarech M, Shoham M (1996) Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nat Struct Biol 3:452–458. doi:10.1038/nsb0596-452

    Article  CAS  PubMed  Google Scholar 

  • Garrity G, Boone DR, Castenholz RW (2012) The archaea and the deeply branching and phototrophic bacteria. Bergey’s manual of systematic bacteriology, vol. 1. Springer Science & Business Media, Berlin Heidelberg New York

  • Gasteiger E, Hoogland C, Gattiker A (2005) Protein identification and analysis tools on the ExPASy server. Humana Press, New York

  • Gribble GW (2009) Naturally occurring organohalogen compounds-a comprehensive update. Progress in the chemistry oforganic natural products, vol 91. Springer Science & Business Media, Berlin Heidelberg New York

  • Häggblom MM, Knight VK, Kerkhof LJ (2000) Anaerobic decomposition of halogenated aromatic compounds. Environ Pollut 107:199–207. doi:10.1016/S0269-7491(99)00138-4

    Article  PubMed  Google Scholar 

  • Hareland WA, Crawford RL, Chapman PJ, Dagley S (1975) Metabolic function and properties of 4hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans. J Bacteriol 121:272–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. doi:10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  • Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, Lee M, Mai VP, Marjuoa Y, Parker J, Tsui M (2006) Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ Health Perspect 114:40–50. doi:10.1289/ehp.8051

  • Hill KE, Marchesi JR, Weightman AJ (1999) Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. J Bacteriol 181:2535–2547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:1. doi:10.1186/2046-9063-8-4

    Article  Google Scholar 

  • Kästner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362

    PubMed  PubMed Central  Google Scholar 

  • Kloos WE, Tornabene TG, Schleifer KH (1974) Isolation and characterization of Micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. Int J Syst Bacteriol 24:79–101. doi:10.1099/00207713-24-1-79

    Article  CAS  Google Scholar 

  • Kurihara T, Esaki N (2008) Bacterial hydrolytic dehalogenases and related enzymes: occurrences, reaction mechanisms, and applications. Chem Rec 8:67–74

    Article  CAS  PubMed  Google Scholar 

  • Kushner D, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed)Halophilic bacteria, vol. 1. CRC Press, Boca Raton, pp 87–103

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  • Lefebvre O, Tan Z, Kharkwal S, Ng HY (2012) Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour Technol 112:336–340. doi:10.1016/j.biortech.2012.02.048

    Article  CAS  PubMed  Google Scholar 

  • Lerner MG, Carlson HA (2006) APBS plugin for PyMOL. University of Michigan, Ann Arbor

    Google Scholar 

  • Liithy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  Google Scholar 

  • Litchfield CD, Gillevet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol 28:48–55. doi:10.1038/sj/jim/7000175

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Gou Z, Hu Q, Wang J, Chen K, Xu C, Li S, Jiang J (2016) Hydrolytic dehalogenation of the chlorothalonil isomer o-tetrachlorophthalonitrile by Pseudochrobactrum sp. BSQ-1. Int Biodeterior Biodegron 107:42–47. doi:10.1016/j.ibiod.2015.11.006

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98. doi:10.1007/s007920050142

    Article  CAS  PubMed  Google Scholar 

  • Matturro B, Presta E, Rossetti S (2016) Reductive dechlorination of tetrachloroethene in marine sediments: biodiversity and dehalorespiring capabilities of the indigenous microbes. Sci Total Environ 545–546:445–452. doi:10.1016/j.scitotenv.2015.12.098

    Article  PubMed  Google Scholar 

  • Mehrshad M, Amoozegar MA, Makhdoumi A, Rasooli M, Asadi B, Schumann P, Ventosa A (2015) Halovarius luteus gen. nov., sp. nov., a novel extremely halophilic archaeon from Urmia salt lake, Iran. Int J Syst Evol Microbiol 65:2420–2425. doi:10.1099/ijs.0.000279

    Article  CAS  PubMed  Google Scholar 

  • Meng C, He Q, Huang J-W, Cao Q, Yan X, Li S-P, Jiang J-D (2015) Degradation of chlorothalonil through a hydrolytic dehalogenase secreted from Bacillus subtilis WB800. Int Biodeterior Biodegr 104:97–104. doi:10.1016/j.ibiod.2015.05.017

    Article  CAS  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164. doi:10.1016/S0301-4622(00)00126-5

    Article  CAS  PubMed  Google Scholar 

  • Mohamad NR, Buang NA, Mahat NA, Lok YY, Huyop F, Aboul-Enein HY, Wahab RA (2015) A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes. Enzym Microb Technol 72:49–55. doi:10.1016/j.enzmictec.2015.02.007

    Article  CAS  Google Scholar 

  • Mohn WW, Stewart GR (2000) Limiting factors for hydrocarbon biodegradation at low temperature in arctic soils. Soil Biol Biochem 32:1161–1172. doi:10.1016/S0038-0717(00)00032-8

    Article  CAS  Google Scholar 

  • Moran P, Coats B (2012) Biological sample preparation for SEM imaging of porcine retina. Microscopy Today 20:28–31

    Article  CAS  Google Scholar 

  • Nardi-Dei V, Kurihara T, Park C, Esaki N, Soda K (1997) Bacterial DL-2-haloacid dehalogenase from Pseudomonas sp. strain 113: gene cloning and structural comparison with D- and L-2-haloacid dehalogenases. J Bacteriol 179:4232–4238

  • Novak HR, Sayer C, Isupov MN, Gotz D, Spragg AM, Littlechild JA (2014) Biochemical and structural characterisation of a haloalkane dehalogenase from a marine Rhodobacteraceae. FEBS Lett 588:1616–1622. doi:10.1016/j.febslet.2014.02.056

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:1–7. doi:10.1111/j.1574-6941.2002.tb00900.x

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:1–13. doi:10.1186/1746-1448-4-2

    Article  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834. doi:10.1080/09593330903370026

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398. doi:10.1007/BF00129095

    Article  CAS  Google Scholar 

  • Ortega-Calvo J-J, Gschwend PM (2010) Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene. Appl Environ Microbiol 76:4430–4437. doi:10.1128/AEM.00461-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qing Li Q, Loganath A, Seng Chong Y, Tan J, Philip Obbard J (2006) Persistent organic pollutants and adverse health effects in humans. J Toxic Environ Health A 69:1987–2005. doi:10.1080/15287390600751447

    Article  Google Scholar 

  • Sanchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300. doi:10.1046/j.1365-2672.2003.01834.x

    Article  CAS  PubMed  Google Scholar 

  • Schmidberger JW, Wilce JA, Weightman AJ, Whisstock JC, Wilce MCJ (2008) The crystal structure of DehI reveals a new alpha-haloacid dehalogenase fold and active-site mechanism. J Mol Biol 378:284–294. doi:10.1016/j.jmb.2008.02.035

    Article  CAS  PubMed  Google Scholar 

  • Slater JH, Bull AT, Hardman DJ (1995) Microbial dehalogenation. Biodegradation 6:181–189. doi:10.1007/bf00700456

    Article  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Galinski EA, Belloch C, Tindall BJ (2006) Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio Fendrich 1989 with the type species Halovibrio variabi. Int J Syst Evol Microbiol 56:379–388. doi:10.1099/ijs.0.63964-0

    Article  CAS  PubMed  Google Scholar 

  • Steadman SR, McMahon G (2011) The Oxford handbook of ancient Anatolia. Oxford University Press, Oxford

  • Stringfellow JM, Cairns SS, Cornish A, Cooper RA (1997) Haloalkanoate dehalogenase II (DehE) of a Rhizobium sp.-molecular analysis of the gene and formation of carbon monoxide from trihaloacetate by the enzyme. Eur J Biochem 250:789–793. doi:10.1111/j.1432-1033.1997.00789.x

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YJ, Carpenter SD, Deming JW, Krieger-Brockett B (2006) Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget sound, WA. Mar Pollut Bull 52:1431–1440. doi:10.1016/j.marpolbul.2006.04.009

    Article  CAS  PubMed  Google Scholar 

  • Tejeda-Agredano MC, Gallego S, Niqui-Arroyo JL, Vila J, Grifoll M, Ortega-Calvo JJ (2010) Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids. Environ Sci Technol 45:1074–1081. doi:10.1021/es102418u

    Article  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe-Jongbloed A, Bishop PL (2007) Comparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditions. J Environ Eng Sci 6:367–376. doi:10.1139/s06-057

    Article  CAS  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  • Van Pée KH, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312. doi:10.1016/S0045-6535(03)00204-2

    Article  PubMed  Google Scholar 

  • Ve Habitatlar AM (2002) Alkaliphilic micro-organisms and habitats. Turk J Biol 26:181–191

    Google Scholar 

  • Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: Symposia of the Society for General Microbiology 1999. Cambridge University Press, Cambridge, p 223

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Liang B, Li F, Li S (2011) Recent advances in the biodegradation of Chlorothalonil. Curr Microbiol 63:450–457. doi:10.1007/s00284-011-0001-7

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Jiang Y, Chen X, Jiang Y, Lai H (2015) Amycolatopsis flava sp. nov., a halophilic actinomycete isolated from Dead Sea Antonie van Leeuwenhoek doi:10.1007/s10482-015-0542-z

  • Xiang W, Guo J, Feng W, Huang M, Chen H, Zhao J, Zhang J, Yang Z, Sun Q (2008) Community of extremely halophilic bacteria in historic Dagong brine well in southwestern China. World J Microbiol Biotechnol 24:2297–2305. doi:10.1007/s11274-008-9744-0

  • Zanaroli G, Negroni A, Häggblom MM, Fava F (2015) Microbial dehalogenation of organohalides in marine and estuarine environments. Curr Opin Biotechnol 33:287–295. doi:10.1016/j.copbio.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  • Zeki Camur M, Mutlu H (1996) Major-ion geochemistry and mineralogy of the salt Lake (Tuz Gölü) basin, Turkey. Chem Geol 127:313–329. doi:10.1016/0009-2541(95)00129-8

    Article  Google Scholar 

  • Zhang J, Xin Y, Cao X, Xue S, Zhang W (2014) Purification and characterization of 2-haloacid dehalogenase from marine bacterium Paracoccus sp. DEH99, isolated from marine sponge Hymeniacidon perlevis. J Ocean Univ China 13:91–96. doi:10.1007/s11802-014-2357-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Fundamental Research Grant Scheme from the Ministry of Higher Education Malaysia (FRGS R.J130000.7826.4F649) and the Research University Grant Scheme from the Ministry of Education, Malaysia (GUP Q.J130000.2545.09H95) from the Universiti Teknologi, Malaysia supported this work. YK would like to thank Ondokuz Mayiz University for joint financial support of the project (PYO.ZRT.1911.15.001‬‬). MFE thanks the Libyan Government for the scholarship award (Libyan Ministry of Higher Education Scholarship Program No. 700/2007).‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roswanira Abdul Wahab or Fahrul Huyop.

Electronic supplementary material

ESM 1

(DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edbeib, M.F., Wahab, R.A., Kaya, Y. et al. In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü Lake, Turkey: insights into a hypersaline-adapted dehalogenase. Ann Microbiol 67, 371–382 (2017). https://doi.org/10.1007/s13213-017-1266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-017-1266-2

Keywords

Navigation