Skip to main content
Log in

Characterisation of Arthrobacter sp. S1 that can degrade α and β-haloalkanoic acids isolated from contaminated soil

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A bacterium identified as Arthrobacter sp. S1 by 16S rRNA was isolated from contaminated soil. This is the first reported study that Arthrobacter could utilize both α-halocarboxylix acid (αHA) [2,2-dichloropropionic acid (2,2-DCP) and D,L-2-chloropropionic acid (D,L-2-CP)] and β-halocarboxylix acid (βHA) [3-chloropropionic acid (3CP)] as sole source of carbon with cell doubling times of 5 ± 0.2, 7 ± 0.1, and 10 ± 0.1 h, respectively. More than 85 % chloride ion released was detected in the growth medium suggesting the substrates used were utilized. To identify the presence of dehalogenase gene in the microorganism, a molecular tool that included the use of oligonucleotide primers specific to microorganisms that can grow in halogenated compounds was adapted. A partial putative dehalogenase gene was determined by direct sequencing of the PCR-amplified genomic DNA of the bacterium. A comparative analysis of the deduced amino acid sequence data revealed that the amino acid sequence has a low identity of less than 15 % to both group I and group II dehalogenases, suggesting that the current putative dehalogenase amino acid sequence was completely distinct from both α-haloacids and β-haloacids dehalogenases. This investigation is useful in studying the microbial populations in order to monitor the presence of specific dehalogenase genes and to provide a better understanding of the microbial populations that are present in soil or in water systems treating halogenated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tools. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Armfield SJ, Sallis PJ, Baker PB, Bull AT, Hardman DJ (1995) Dehalogenation of haloalkanes by Rhodoccoccus erythropolis Y2. Biodegradation 6:237–246. doi:10.1007/BF00700463

    Article  PubMed  CAS  Google Scholar 

  • Bergman JG, Sanik J (1957) Determination of trace amounts of chlorine in naptha. Anal Chem 29:241–243. doi:10.1021/ac60122a018

    Article  Google Scholar 

  • Bollag JM, Alexander M (1971) Bacterial dehalogenation of chlorinated aliphatic acids. Soil Biol Biochem 3:241–243. doi:10.1016/0038-0717(71)90001-0

    Google Scholar 

  • Cairns SS, Cornish A, Cooper RA (1996) Cloning, sequencing and expression in Escherichia coli of two Rhizobium sp. genes encoding haloalkanoate dehalogenases of opposite stereospecificity. Eur J Biochem 235:744–749

    Article  PubMed  CAS  Google Scholar 

  • Chan WY, Wong M, Guthrie J, Savchenco AV, Yakunin AF, Pai EF, Edwards EA (2010) Sequence- and activity-based screening of microbial genomes for novel dehalogenases. Microb Biotechnol 3:107–120. doi:10.1111/j.1751-7915.2009.00155.x

    Article  PubMed  CAS  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 4:641–685

    Google Scholar 

  • Fortin N, Fulthorpe RR, Allen DG, Greer CW (1998) Molecular analysis of bacterial isolates and total community DNA from Kraft pulp mill effluent treatment systems. Can J Microbiol 44(6):537–546

    Article  PubMed  CAS  Google Scholar 

  • Fulton CK, Cooper RA (2005) Catabolism of sulfamate by Mycobacterium sp. CF1. Environ Microbiol 7:378–381

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Hamid AAA, Wong EL, Joyce-Tan KH, Shamsir MS, Hamid THTA, Huyop F (2012) Molecular modeling and functional studies of the non-stereospecific α-Haloalkanoic Acid Dehalogenase (DehE) from Rhizobium sp. RC1 and its association with 3-Chloropropionic acid (β-Chlorinated Aliphatic acid). Biotechnol Biotechnol Equip (in press)

  • Hareland WA, Crawford RL, Chapman PJ, Dagley S (1975) Metabolic function and properties of a 4-hydroxyphenylacetic acid 1-hyroxylase from Pseudomonas acidovorans. J Bacteriol 121:272–285, PMCID: PMC285641

    PubMed  CAS  Google Scholar 

  • Hill KE, Marchesi JR, Weightman AJ (1999) Investigation of two evolutionary unrelated halocarboxylic acid dehalogenase gene families. J Bacteriol 181:2535–2547, http://jb.asm.org/content/181/8/2535.full.pdf+html

    PubMed  CAS  Google Scholar 

  • Huang J, Xin Y, Zhang W (2011) Isolation, characterization and identification of a Paracoccus sp. 2-haloacid—degrading bacterium from the marine sponge Hymeniacidon perlevis. J Basic Microbiol 51:318–324

    Article  PubMed  CAS  Google Scholar 

  • Huyop F, Cooper RA (2011) Regulation of dehalogenase E(DehE) and expression of dehalogenase regulator gene (DehR) from Rhizobium sp. RC1 in E. coli. Biotechnol Biotechnol Equip 25:2237–2242. doi:10.5504/bbeq.2011.0009

  • Janssen DB, Pries F, van der Ploeg JR (1994) Genetics and biochemistry of dehalogenating enzymes. Annu Rev Microbiol 48:163–191

    Article  PubMed  CAS  Google Scholar 

  • Jing NH, Wahab RA, Taha AM, Rashid NA, Huyop F (2008) A further characterization of 3-chloropropionic acid dehalogenase from Rhodococcus sp. HJ1. Res J Microbiol 3:482–488. doi:10.3923/jm.2008.482.488

    Article  CAS  Google Scholar 

  • Jones DHA, Barth PT, Byrom D, Thomas CM (1992) Nucleotide sequence of the structural gene encoding a 2-haloalkanoic acid dehalogenase of Pseudomonas putida strain AJ1 and purification of the encoded protein. J Gen Microbiol 138:675–683

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Toyama T, Maeda T, Nishino H, Tonomura K (1994) Cloning and sequence analysis of a plasmid-encoded 2-haloacid dehalogenase gene from Pseudomonas putida No. 109. Biosci Biotechnol Biochem 58:160–163

    Article  PubMed  CAS  Google Scholar 

  • Kurihara T (2011) A mechanistic analysis of enzymatic degradation of organohalogen compounds. Biosci Biotechnol Biochem 75:189–198. doi:10.1271/bbb.100746

    Article  PubMed  CAS  Google Scholar 

  • Kurihara T, Esaki N (2008) Bacterial hydrolytic dehalogenase and related enzymes: occurrences, reaction mechanisms, and applications. Chem Rec 8:67–74. doi:10.1002/tcr.20141

    Article  PubMed  CAS  Google Scholar 

  • Kurihara T, Esaki N, Soda K (2000) Bacterial 2-haloacid dehalogenases: structures and reaction mechanisms. Mol Catal B Enzym 10:57–65. doi:10.1016/S1381-1177(00)00108-9, http://dx.doi.org/10.1016/S1381-1177(00)00108

    Article  CAS  Google Scholar 

  • Lin C, Yang L, Xu G, Wu J (2011) Biodegradation and metabolic pathway of β-chlorinated aliphatic acid in Bacillus sp. CGMCC no. 4196. Appl Microbiol Biotechnol 90:689–696

    Article  PubMed  CAS  Google Scholar 

  • Mesri S, Wahab RA, Huyop F (2009) Degradation of 3-chloropropionic acid by Pseudomonas sp. B6P isolated from a rice paddy field. Ann Microbiol 59:447–451. doi:10.1007/BF03175129

    Article  CAS  Google Scholar 

  • Murdiyatmo U, Asmara W, Tsang JS, Baines AJ, Bull AT, Hardman DJ (1992) Molecular biology of the 2-haloacid halidohydrolase IVa from Pseudomonas cepacia MBA4. Biochem J 284:87–93

    Google Scholar 

  • Slater JH, Bull AT, Hardman DJ (1995) Microbial dehalogenation. Biodegradation 6:181–189. doi:10.1007/BF00700456

    Article  CAS  Google Scholar 

  • Staub DK, Kohler HP (1989) Microbial degradation of β-chlorinated four-carbon aliphatic acids. J Bacteriol 171:1428–1434, PMCID: PMC209763

    Google Scholar 

  • Stringfellow JM, Cairns SS, Cornish A, Cooper RA (1997) Haloalkanoate dehalogenase II (DehE) of a Rhizobium sp. Molecular analysis of the gene and formation of carbon monoxide from trihaloacetate by the enzyme. Eur J Biochem 250:789–793

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thasif S, Hamdan S, Huyop F (2009) Degradation of D, L-2chloropropionic acid by bacterial dehalogenases that shows stereospecificity and its partial enzymatic characteristics. Biotechnology 8:264–269. doi:10.3923/biotech.2009.264.269

    Article  CAS  Google Scholar 

  • van der Ploeg J, van Hall G, Janssen DB (1991) Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene. J Bacteriol 173:7925–7933, PMCID: PMC212586

    PubMed  Google Scholar 

  • Yokota T, Fuse H, Omori T, Minoda Y (1986) Microbial dehalogenation of haloalkanes mediated by oxygenase or halidohydrolase. Agric Biol Chem 50:453–460

    Article  CAS  Google Scholar 

  • Zulkifly AH, Roslan DD, Hamid AAA, Hamdan S, Huyop F (2010) Biodegradation of low concentration of monochloroacetic acid—Degrading Bacillus sp. TW1 isolated from Terengganu water treatment and distribution plant. Appl Sci 10:2940–2944. doi:10.3923/jas.2010.2940.2944

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their great gratitude to the Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia-GUP Q.J130000.7135.00H34 and FRGS 4 F008 (MOHE-UTM) for supporting this research, and the Microbiology Research Group UNO-R, Philippines for initial isolation and characterization of the isolated microbes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahrul Huyop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagherbaigi, S., Gicana, R.G., Lamis, R.J. et al. Characterisation of Arthrobacter sp. S1 that can degrade α and β-haloalkanoic acids isolated from contaminated soil. Ann Microbiol 63, 1363–1369 (2013). https://doi.org/10.1007/s13213-012-0595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0595-4

Keywords

Navigation