Skip to main content
Log in

Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bioprospecting is an umbrella term describing the process of search and discovery of commercially valuable new products from biological sources in plants, animals, and microorganisms. In a way, bioprospecting includes the exploitative appropriation of indigenous forms of knowledge by commercial actors, as well as the search for previously unknown compounds in organisms that have never been used in traditional ways. These resources may be used in industrial applications, environmental, biomedical, and biotechnological aspects. Bacillus species are one of the most studied organisms from different perspectives and diverse environments, namely for industrial and environmental applications owing to the adaptations and versatile molecules they produce. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Unlike other microbial species Bacillus species have been isolated from different sources both natural and artificial sources some being extreme in nature, for bioprospecting studies to exploit them to fabricate novel biomolecules or functions. Solar salterns are among the least documented environments as a source of Bacillus species due to their unique nature comprising multiple extremities of varying degrees, namely temperature, pH, and minimal nutrients along with saturating salinity. Haloalkaliphilic Bacillus species are the group specifically adapted to grow optimally under moderate halophilic and alkaline conditions. Artificial solar salterns are not evenly established as a habitat because they are created and maintained by humans. Hence, the present paper makes an attempt to review the potential of haloalkaliphilic Bacillus species from manmade solar salterns for bioprospecting studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  • Abbas M, Parveen Z, Iqbal M, Riazuddin IS, Ahmed M, Bhutto R (2010) Monitoring of toxic metals (cadmium, lead, arsenic and mercury) in vegetables of Sindh, Pakistan. Kathmandu Univ J Sci Eng Technol 6:60–65

    Google Scholar 

  • Adams MWW, Perler FB, Kelly RM (1995) Extremozymes: expanding the limits of biocatalysis. Biotechnology 13:662–668

    Article  CAS  PubMed  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour technol 98(12):2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Allievi MC, Mariano PA (2011) Metal biosorption by surface-layer proteins from Bacillus species. J Microbiol Biotechnol 21(2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by ‘Bacillus subtilis” B30 and its application in enhancing oil recovery. Colloids Surf B: Biointerfaces 114:324–333

    Article  CAS  PubMed  Google Scholar 

  • Annamalai N, Rajeswari MV, Sahu SK, Balasubramanian T (2014) Purification and characterization of solvent stable, alkaline protease from ‘Bacillus firmus” CAS 7 by microbial conversion of marine wastes and molecular mechanism underlying solvent stability. Proc Biochem 49(6):1012–1019

    Article  CAS  Google Scholar 

  • Aono R, Horikoshi K (1991) Carotenes produced by alkaliphilic yellow pigmented strains of Bacillus. Agric Biol Chem 55:2643–2645

    CAS  Google Scholar 

  • Ara K, Manabe K, Liu S, Kageyama Y, Ozawa T, Tohata M, Ogasawara N et al (2014) Creation of novel technologies for extracellular protein production toward the development of Bacillus subtilis genome factories. In: Anazawa H and Shimizu S (eds) Microbial production. Springer Japan. https://books.google.co.in/books/about/Microbial_Production.html?id=s3bpngEACAAJ&redir_esc=y

  • Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V (2006) Kinetics of high strength phenol degradation using Bacillus brevis. J Hazard Mater 129(1):216–222

    Article  CAS  PubMed  Google Scholar 

  • Asha BM, Revathi M, Yadav A, Sakthivel N (2012) Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol 22:1501–1509

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J, Yang X, Du R, Chen Y, Wang S, Qiu R (2014) Biosorption mechanisms involved in immobilization of soil Pb by ‘Bacillus subtilis” DBM in a multi-metal-contaminated soil. J Environ Sci 26(10):2056–2064

    Article  Google Scholar 

  • Bajaj BK, Singh S, Khullar M, Singh K, Bhardwaj S (2014) Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues. Braz Arch Biol Technol 57(5):653–662

    Article  CAS  Google Scholar 

  • Barros FFC, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35(9):1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Bento FM, de Oliveira Camargo FA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160(3):249–255

    Article  CAS  Google Scholar 

  • Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67(18):3299–3311

    Article  CAS  Google Scholar 

  • Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462

    Article  CAS  PubMed  Google Scholar 

  • Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choi MM (2014) Properties and characterization of biosurfactant in crude oil biodegradation by bacterium ‘Bacillus methylotrophicus USTBa’. Fuel 122:140–148

    Article  CAS  Google Scholar 

  • Colwell RR (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5:423–445

    Article  CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006) Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochem 41(4):815–823

    Article  CAS  Google Scholar 

  • Cui RY, Zheng J, Wu CD, Zhou RQ (2015) Effect of different halophilic microbial fermentation patterns on the volatile compound profiles and sensory properties of soy sauce moromi. Eur Food Res Technol 240(3):669–670

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochem 42(8):1191–1199

    Article  CAS  Google Scholar 

  • Das PK, Das S, Sahoo D, Dalei J, Rao VM, Nayak S, Palo S (2014) Comparative evaluation of purification methods for production of polypeptide antibiotics–“Polymyxin B” and “Cerexin A” from Bacillus sp. Pharma Tutor 2(8):188–200

    CAS  Google Scholar 

  • Dawkar VV, Jadhav UU, Jadhav SU, Govindwar SP (2008) Biodegradation of disperse textile dye Brown 3REL by newly isolated Bacillus sp. VUS. J Appl Microbiol 105(1):14–24

    Article  CAS  PubMed  Google Scholar 

  • Doddamani HP, Ninnekar HZ (2000) Biodegradation of phenanthrene by a Bacillus species. Curr Microbiol 41(1):11–14

    Article  CAS  PubMed  Google Scholar 

  • Donio MBS, Ronica SFA, Viji VT, Velmurugan S, Jenifer JA, Michaelbabu M, Citarasu T (2013) Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants. Asian Pac J Trop Med 6(11):876–883

    Article  CAS  PubMed  Google Scholar 

  • Esteban-Torres M, Mancheño JM, de las Rivas B, Muñoz R (2015) Characterization of a halotolerant lipase from the lactic acid bacteria ‘Lactobacillus plantarum” useful in food fermentations. LWT-Food Sci Technol 60(1):246–252

  • Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Hu Q (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147:147–151

    Article  CAS  PubMed  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16

    Article  Google Scholar 

  • Feitkenhauer H, Müller R, MAuml H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070 C by Thermus and Bacillus spp. Biodegradation 14(6):367–372

    Article  CAS  PubMed  Google Scholar 

  • Fergus GP (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41:711–753

    Google Scholar 

  • Fuchs SW, Jaskolla TW, Bochmann S, Kötter P, Wichelhaus T, Karas M, Entian KD (2011) Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis sub sp. spizizenii DSM 15029T with high antimicrobial activity. Appl Environ Microbiol 77(5):1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garabito MJ, Marquez MC, Ventosa A (1998) Halotolerant Bacillus diversity in hypersaline environments. Can J Microbiol 44:95–102

    Article  CAS  Google Scholar 

  • Gascoyne DJ, Connor JA, Bull AT (1991) Capacity of siderophore- producing alkalophilic bacteria to accumulate iron, gallium and aluminum. Appl Microbiol Biotechnol 36:136–141

    Article  Google Scholar 

  • Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54(1):61–67

    Article  CAS  Google Scholar 

  • Giri AK, Patel RK, Mahapatra SS (2011) Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chem Eng J 178:15–25

    Article  CAS  Google Scholar 

  • Giri AK, Patel RK, Mahapatra SS, Mishra PC (2013) Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environ Sci Pollut Res 20(3):1281–1291

    Article  CAS  Google Scholar 

  • Gong R, Ding Y, Yang C, Liu H, Sun Y (2005) Dyes Pigment 64:187–192

    Article  CAS  Google Scholar 

  • Goyer RA, Chisholm JJ (1972) Lead: In: Lee DHK (ed) Metallic contaminants in human health, London Academy Press, pp 57–95

  • Grant WD (2006) Alkaline environments and biodiversity. Extremophiles. UNESCO, Eolss Publishers, Oxford

    Google Scholar 

  • Green-Ruiz C (2006) Mercury (II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour Technol 97(15):1907–1911

    Article  CAS  PubMed  Google Scholar 

  • Gurujeyalakshmi G, Oriel P (1989) Isolation of phenol-degrading B. stearothermophilus and partial characterization of the phenol hydroxylase. Appl Environ Microbiol 55(2):500–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutnick DL, Bach H (2000) Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl Microbiol Biotechnol 54:451–460

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki N, Shirai S, Niitsu M, Kakinuma K, Oshima T (1993) An alkalophilic Bacillus sp. produces 2-phenylethylamine. Appl Environ Microbiol 59:2720–2722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    Article  CAS  PubMed  Google Scholar 

  • Hasan HA, Abdullah SRS, Kofli NT, Kamarudin SK (2012) Isotherm equilibria of Mn 2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. J Environ Manag 111:34–43

    Article  CAS  Google Scholar 

  • Hassen A, Saidi N, Cherif M, Boudabous A (1998) Resistance of environmental bacteria to heavy metal. Bioresour Technol 64:7–15

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Hezayen FF, Rehm BHA, Eberhardt R, Steinbüchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54(3):319–325

    Article  CAS  PubMed  Google Scholar 

  • Hinteregger C, Streischsberg F (1997) Halomonas sp. a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 19(11):1099–1102

  • Horikoshi K (1996) Alkaliphiles from an industrial point of view. FEMS Microbiol Rev 18:259–270

    Article  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horikoshi K (2011) General physiology of alkaliphiles. In: Extremophiles handbook, Springer. pp 100–119. doi: 10.1007/978-4-431-53898-1_2.5

  • Ibrahim ASS, El-diwany AI (2007) Isolation and identification of new cellulase producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1:473–478

    CAS  Google Scholar 

  • Imhoff JF, Sahl HG, Soliman GSH, Trűper HG (1979) The Wadi Natrun chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234

    Article  CAS  Google Scholar 

  • Jadhav SU, Jadhav MU, Kagalka AN, Govindwar SP (2008) Decolorization of Brilliant Blue G dye mediated by degradation of the microbial consortium of Galactomyces geotrichum and Bacillus sp. J Chin Inst Chem Eng 39(6):563–570

    Article  CAS  Google Scholar 

  • Jenneman GE, McInerney MJ, Knapp RM, Clark JB, Feero JM, Revus DE, Menzie DE (1983) Halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery. Dev Ind Microbiol 24:485–492

  • Jones BE, Grant WD, Collins NC, Mwatha WC (1994) Alkaliphiles: diversity and identification. In: Priest FG, Ramos-Cormenzana A, Tindall BJ (eds) Bacterial diversity and systematics. Plenum Press, New York, pp 195–230

  • Joshi S, Yadav S, Nerurkar A, Desai AJ (2007) Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. J Microbiol Biotechnol 17(2):313

    CAS  PubMed  Google Scholar 

  • Joshi SJ, Suthar H, Yadav AK, Hingurao K, Nerurkar A (2012) Occurrence of biosurfactant producing Bacillus sp. in diverse habitats. ISRN biotechnology. doi:10.5402/2013/652340

  • Kamekura M, Onishi H (1974) Halophilic nuclease from a moderately halophilic Micrococcus varians. J Bacteriol 119:339–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolekar YM, Pawar SP, Gawai KR, Lokhande PD, Shouche YS, Kodam KM (2008) Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresour Technol 99(18):8999–9003

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6(2):561–565

    Article  CAS  PubMed  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16(7):291–300

    Article  CAS  Google Scholar 

  • Krulwich TA, Liu J, Morino M, Fujisawa M. Masahiro Ito M, Hicks DB (2011) Adaptive mechanisms of extreme alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer. pp 120–140 doi: 10.1007/978-4-431-53898-1_2.6

  • Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology 60:596–601

    Google Scholar 

  • Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106(6):2017–2023

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (1993) Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim Biophys Acta (BBA) Bioenerg 1183(2):241–261

    Article  CAS  Google Scholar 

  • Liu H, Fang HH (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 80(7):806–811

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wu H, Feng J, Li Z, Lin G (2014) Heavy metal contamination and ecological risk assessments in the sediments and zoobenthos of selected mangrove ecosystems, South China. Catena 119:136–142

    Article  CAS  Google Scholar 

  • Ma Y, Zhang W, Xue Y, Zhou P, Ventosa A, Grant WD (2004) Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analysis. Extremophiles 8:45–51

    Article  CAS  PubMed  Google Scholar 

  • Mansour SA (2014) Monitoring and health risk assessment of heavy metal contamination in food. Practical food safety: contemporary issues and future directions. p. 235–255. doi:10.1002/9781118474563.ch13

  • Marco P, Erhard B (2011) Cellular adjustments of bacillus subtilis and other bacilli to fluctuating salinities. In: Antanio O, Aharon O, Yanhe M (eds) halophiles and hypersaline environmentsa. doi: 10.1007/978-3-642-20198-1

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Martinez DST, Faria AF, Berni E, Souza Filho AG, Almeida G, Caloto-Oliveira A, Alves OL (2014) Exploring the use of biosurfactants from Bacillus subtilis in bionanotechnology: a potential dispersing agent for carbon nanotube ecotoxicological studies. Process Biochem 49(7):1162–1168

    Article  CAS  Google Scholar 

  • Marvasi M, Visscher PT, Martinez LC (2010) Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol Lett 313(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L, Gambacorta A, Nicolaus B (2002) A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol Lett 24(7):515–519

    Article  CAS  Google Scholar 

  • Maulin PS, Patel KA, Nair SS, Darji AM (2014) An application of response surface methodology in microbial degradation of Azo Dye by Bacillus subtillis ETL-1979. Am J Microbiol Res 2(1):24–34

    Article  CAS  Google Scholar 

  • Meyer H, Weidmann H, Mäder U, Hecker M, Völker U, Lalk M (2014) A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis. Mol BioSyst 10(7):1812–1823

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Doble M (2008) Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol Environ Saf 71(3):874–879

    Article  CAS  PubMed  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Mosin O, Ignatov I (2014) Photochrome transmembrane protein bacteriorhodopsin from purple membranes of Halobacterium Halobium in nano-and biotechnologies. J Med Physiol Biophys 4:81–99

    Google Scholar 

  • Mukherjee AK, Das K (2005) Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol Ecol 54(3):479–489

    Article  CAS  PubMed  Google Scholar 

  • Müller V, Köcher S (2011) Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium halobacillus halophilus. In: Horikoshi K (ed) Extremophiles Handbook. Springer, Tokyo, pp 383–400

  • Mullen MD, Wolf DC, Ferris FC, Beveridge TJ, Flemming CA, Bailey FW (1989) Bacterial sorption of heavy metals. Environ Microbiol 55:3143–3149

    CAS  Google Scholar 

  • Nieto JJ, Fernandez-Castillo R, Marquez M, Ventosa A, Quesada E, Ruiz-Berraquero F (1989) Survey of metal tolerance in moderately Halophilic eubacteria. Appl Environ Microbiol 55:2385–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nriagu JO (1988) A silent epidemic of environmental metal poisoning. Environ Pollut 50:139–161

    Article  CAS  PubMed  Google Scholar 

  • Ola IO, Akintokun AK, Akpan I, Omomowo IO, Areo VO (2010) Aerobic decolourization of two reactive azo dyes under varying carbon and nitrogen source by Bacillus cereus. Afr J Biotechnol 9(5):672–677

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002a) Properties of halophiles. In: Halophilic microorganisms and their environments. Springer, pp 233–278. http://www.springer.com/us/book/9781402008290

  • Oren A (2002b) Halophilic microorganisms and their environments In: cellular origin and life in extreme habitats. http://www.springer.com/us/book/9781402008290

  • Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 263–282

    Google Scholar 

  • Paavilainen S, Helisto P, Korpela T (1994) Conversion of carbohydrates to organic acids by alkaliphilic bacilli. J Ferment Bioeng 78:217–222

    Article  CAS  Google Scholar 

  • Padamavathy S, Sandhya S, Swaminathan K, Subrahmanyam YV, Kaul SN (2003) Comparison of decolourization of reactive azo dyes by microorganisms isolated from various source. J Environ Sci 15:628–632

    CAS  Google Scholar 

  • Patel R, Dodia M, Singh SP (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem 40(11):3569–3575

    Article  CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58:179–196

    Article  CAS  Google Scholar 

  • Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14(6):257–263

    Article  PubMed  CAS  Google Scholar 

  • Peyton B, Wilson M, Tomás Y, David R (2002) Kinetics of phenol biodegradation in high salt solutions. Water Res 36:4811–4820

    Article  CAS  PubMed  Google Scholar 

  • Pirri G, Giuliani A, Nicoletto SF, Pizzuto L, Rinaldi AC (2009) Lipopeptides as anti-infectives: a practical perspective. Cent Eur Journal Biol 4(3):258–273

    CAS  Google Scholar 

  • Prakash N, Gopal S (2014) Analysis of the glycoside hydrolase family 8 catalytic core in cellulase-chitosanases from Bacillus sp. Int J Comput Bioinfo ISilico Model 3(1):315–320

    Google Scholar 

  • Price NP, Rooney AP, Swezey JL, Perry E, Cohan FM (2007) Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 271(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Priest FG (1977) Extracellular enzyme synthesis in the Genus Bacillus, Bacteriol rev. Am Soc Microbiol 41(3):711–753

    CAS  Google Scholar 

  • Purohit MK, Raval VH, Singh SP (2014) Haloalkaliphilic bacteria: molecular diversity and biotechnological applications. In: Geomicrobiology and biogeochemistry. Springer Berlin Heidelberg, pp 61–79

  • Quesada E, Ventosa A, Rodriguez VF, Megias L, Ramos CA (1983) Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657

    Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85(6):1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar JC, Mahawar H, Kumar R, Gupta P, Mathur T, Gehlot HS (2014) ZnO nanoparticles induced exopolysaccharide production by B. subtilis strain JCT1 for arid soil applications. Int J Biol Macromol 65:362–368

    Article  CAS  PubMed  Google Scholar 

  • Rani G, Prema A, Seema K, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78(8):967–973

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Rudd T, Sterritt RM, Lester JN (1984) Complexation of heavy metals by extracellular polymers in the activated sludge process. J Water Pollut Control Fed 12(56):1260–1268

    Google Scholar 

  • Sabina K, Fayidh MA, Archana G, Sivarajan M, Babuskin S, Babu PAS, Sukumar M (2014) Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3. Environ Technol 35(17):2194–2203

    Article  CAS  PubMed  Google Scholar 

  • Saju KA, Michael BM, Murugan M, Thiravia RS (2011) Survey on Halophilic microbial diversity of Kovalam Saltpans in Kanyakumari District and its industrial applications. J Appl Pharm Sci 01(05):160–163

    Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    Article  CAS  PubMed  Google Scholar 

  • Santimano MC, Prabhu NN, Garg S (2009) PHA production using Low-cost agro-industrial wastes by Bacillus sp. Strain COLl/Afi. Res J Microbiol 4(3):89–96

    Article  CAS  Google Scholar 

  • Sarafin Y, Donio MBS, Velmurugan S, Michaelbabu M, Citarasu T (2014) Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi J Biol Sci 21(6):511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ (2008) Diversity of Bacillus-like organisms from deep-sea hypersaline anoxic sediments. Saline Syst 4:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. TRENDS Biotechnol 20(12):515–521

    Article  CAS  PubMed  Google Scholar 

  • Shah MP, Patel KA, Nair SS (2013a) Microbiological removal of crystal violet dye by Bacillus subtilis ETL-2211. OA Biotechnol 2(1):9

    Google Scholar 

  • Shah MP, Patel KA, Nair SS, Darji AM (2013b) Microbial degradation of Textile Dye (Remazol Black B) by Bacillus spp. ETL-2012. J Bioremed Biodeg 4(180):2

    Google Scholar 

  • Shah MP, Patel KA, Nair SS, Darji AM (2013c) Potential effect of Two Bacillus sp. on decolorization of Azo dye. J Bioremed Biodeg 4:199

    Google Scholar 

  • Shindo K, Misawa N (2014) New and rare carotenoids isolated from marine bacteria and their antioxidant activities. Mar Drugs 12(3):1690–1698

  • Shyamala GR, Vijayaraghavan R, Meenambigai P (2014) Microbial degradation of reactive dyes—A review. Int J Curr Microbiol App Sci 3(3):421–436

    Google Scholar 

  • Simpson DR, Natraj NR, McInerney MJ, Duncan KE (2011) Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl Microbiol Biotechnol 91(4):1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Bajaj BK (2014) Medium optimization for enhanced production of protease with industrially desirable attributes from Bacillus subtilis K-1. Chem Eng Commun 202(8):1051–1060

  • Singh U, Singh BP, Singh KK (2012) Lead removal from aqueous solutions by Bacillus subtilis. J Chem Pharm Res 4(4):2242–2249

    CAS  Google Scholar 

  • Smith FB (1938) An investigation of a taint in the rib bones of bacon. The determination of halophilic Vibrios. Proc R Soc Queensland 49:29–52

    Google Scholar 

  • Souayeh M, Al-Waheibi YM, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi S, Al-Mandhari M (2014) Optimization of low concentration Bacillus subtilis strain biosurfactant towards microbial enhanced oil recovery. Energy Fuels 28(9):5606–5611

  • Swannell RP (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol 10:234–239

    Article  PubMed  Google Scholar 

  • Syed S, Paramageetham CH (2015) Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica Article ID 319760. doi:10.1155/2015/319760

  • Syed S, Prasada BG, Paramageetham CH (2012) A Measure of Soil microbial diversity and density from Artificial Solar Salterns in Nellore District in A.P, INDIA. Int J Res Biol Sci 2(2):83–86

    Google Scholar 

  • Syed S, Prasada BG, Paramageetham CH (2013a) Isolation of amylase producing bacteria from solar salterns of Nellore district Andhra Pradesh, India. Res Rev J Microbiol 2(1):1

  • Syed S, Prasada BG, Paramageetham CH (2013b) Extracellular enzymatic potential of haloalkaliphiles from solar salterns of Nellore district A.P. India. Asian J Biol Sci 4(2):302–305

    Google Scholar 

  • Tambekar DH, Dhundale VR (2012) Studies on the physiological and cultural diversity of Bacilli characterized from Lonar lake (Ms) India. Biosci Discov 3(1):34–39

    Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115(3):203–211

    Article  CAS  Google Scholar 

  • Ventosa A, Quesada E, Rodrı´guez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1998) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968

    Google Scholar 

  • Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Biosorption of C.I. Reactive Black 5 from aqueous solution using acid treated biomass of brown seaweed Laminaria sp. Dyes Pigment 76:726–732

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Li FY, He W, Miao HH (2010) Hg (II) removal from aqueous solutions by Bacillus subtilis biomass. Clean-Soil Air Water 38(1):44–48

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Microbial extracellular polymeric substances. Springer, Berlin Heidelberg, pp 1–19

  • Wong PK, Yuen PY (1996) Decolourisation and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res 30:1736–1744

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36(1):169–182

    Article  CAS  PubMed  Google Scholar 

  • Woolard CR, Irvine RL (1994) Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. Water Environ Res 66:230–235

    Article  CAS  Google Scholar 

  • Wu L, Wu H, Chen L, Xie S, Zang H, Borriss R, Gao X (2014) Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Appl Environ Microbiol. AEM-02605

  • Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG, Zhang HB, Wu M (2007) Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57(7):1619–1624

    Article  PubMed  Google Scholar 

  • Yang T, Chen ML, Liu LH, Wang JH, Dasgupta PK (2012) Iron (III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As (V). Environ Sci Technol 46(4):2251–2256

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz M, Soran H, Beyatli Y (2005) Determination of poly-β-hydroxybutyrate (PHB) production by some Bacillus spp. World J Microbiol Biotechnol 21(4):565–566

    Article  CAS  Google Scholar 

  • Yuan J, Li B, Zhang N, Waseem R, Shen Q, Huang Q (2012) Production of bacillomycin-and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens. J Agric Food Chem 60(12):2976–2981

  • Zhang W, Angelini T, Tsai SM, Nixon R (2014) EPS forces in Bacillus subtilis biofilms. Bullet Am Phys Soc :59

  • Zhou M, Liu Y, Zeng G, Li X, Xu W, Fan T (2007) Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass. World J Microbiol Biotechnol 23(1):43–48

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang G, Luo Y, Ran W, Shen Q (2012) Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresour Technol 112:254–260

    Article  CAS  PubMed  Google Scholar 

  • Zvyagintseva IS, Poglasova MN, Gotoeva MT, Belyaev SS (2001) Effect of the medium salinity on oil degradation by nocardio form bacteria. Microbiology 70:652–656

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Sri Venkateswara University, Tirupati, India for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Shameer.

Ethics declarations

Disclosure of potential conflicts of interest

All the authors declared that there is no conflict of interest regarding this manuscript and we have not involved any Humans and Animal participants in this manuscript.

Informed consent

“Informed consent was obtained from all individual participants included in the study.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shameer, S. Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies. Ann Microbiol 66, 1315–1327 (2016). https://doi.org/10.1007/s13213-016-1221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1221-7

Keywords

Navigation