Skip to main content
Log in

Isolation, identification and genetic organization of the ADI operon in Enterococcus faecium GR7

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

L-Arginine is an indispensable amino acid, as it is required for normal growth of microbes, plants and animals (Szende et al., Cancer Cell Int 1:1475–1480, 2001). Arginine deiminase is the first enzyme of arginine deiminase (ADI) pathway, which catalyzes the conversion of arginine to citrulline and ammonia in an irreversible reaction. Lactic acid bacteria isolated from dairy products were investigated for their ability to hydrolyze arginine. Citrulline production in many LAB strains suggests that the arginine metabolism takes place via the arginine deiminase pathway. The highest arginine deiminase specific activity (0.27 IU/mg) was reported in isolate GR7, which was characterized morphologically, biochemically and by 16S rRNA gene sequencing as Enterococcus faecium. Genetic organization of the ADI operon in E. faecium GR7 was further studied using various molecular biology and computational techniques. Sequence analysis revealed that the genes involved in arginine catabolism are clustered together in an operon (3,906 bp) consisting of the genes arcA (arginine deiminase), arcB (ornithine transcarbamylase), and arcC (carbamate kinase), which are localized on the anti-sense strand of genomic DNA. Nucleotide sequence analysis revealed three open reading frames (ORFs) that were arranged contiguously and transcribed in the same direction, as an apparent operon. The genes followed the order arcC, arcB, arcA, which differs from that found in other microorganisms. The information obtained in this study provides the basis for testing the potential of arginine catabolism to control the emergence of arginine auxotrophic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Archibald RM (1944) Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. J Biol Chem 156:121–142

    CAS  Google Scholar 

  • Arena ME, Saguir FM, Manca de Nadra MC (1999) Arginine dihydrolase pathway in Lactobacillus plantarum from orange. Int J Food Microbiol 47:203–209

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2007) Identifi cation and quantitation of asparagine and citrulline using high-performance liquid chromatography (HPLC). Anal Chem Insights 2:31–36

    PubMed Central  PubMed  Google Scholar 

  • Barcelona-Andres B, Marina A, Rubio V (2002) Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J Bacteriol 184(22):6289–6300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blancato VS, Repizo GD, Suarez CA, Magni C (2008) Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis involves the GntR family transcriptional activator CitO. J Bacterol 190(22):7419–7430

    Article  CAS  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food 50:131–149

    CAS  Google Scholar 

  • Casiano-Colon A, Marquis RE (1988) Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. App Env Microbiol 54(6):1318–1324

    CAS  Google Scholar 

  • Champomier-Verges MC, Zuniga M, Morel-Deville F, Perez-Martinez Zagorec GM, Ehrlich SD (1999) Relationships between arginine degradation, pH and survival in Lactobacillus sakei. FEMS Microbiol Lett 180:297–304

    Article  CAS  PubMed  Google Scholar 

  • Crow VL, Thomas TD (1982) Arginine metabolism in lactic streptococci. J Bacteriol 150:1024–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Hooghe ID, Wauven CV, Michiels J, Tricot R, de Wilde P, Vanderleyden J, Stalon V (1997) The arginine deiminase pathway in Rhizobium etli: DNA Sequence analysis and functional study of the arcABC genes. J Bacteriol 179:7403–7409

    PubMed Central  PubMed  Google Scholar 

  • De Angelis M, Mariotti L, Rossi J, Servili M, Fox PF, Rolla G, Gobbetti M (2002) Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ Microbiol 68:6193–6201

    Article  PubMed Central  PubMed  Google Scholar 

  • Divol B, Tonon T, Morichon S, Gindreau E, Lonvaud-Funel A (2003) Molecular characterization of Oenococcus œni genes encoding proteins involved in arginine transport. J App Microbiol 94:738–746

    Article  CAS  Google Scholar 

  • Dong Y, Chen YM, Snyder J, Burne RA (2002) Isolation and molecular analysis of the gene cluster for the arginine deiminase system ftom Streptococcus gordonii DL1. Appl Environ Microbiol 68:5549–5553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong YQ, Chen YYM, Burne RA (2004) Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp. J Bacteriol 186:2511–2514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evo 39:783–791

    Article  Google Scholar 

  • Foulquié Moreno MR, Sarantinopoulos P, De Tsakalidou E, Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  PubMed  Google Scholar 

  • Gamper M, Zimmerman A, Haas D (1991) Anaerobic regulation of transcription initiation in the arcDABCoperon of Pseudomonas aeruginosa. J Bacteriol 173:4742–4750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruening P, Fulde M, Valentin-Weigand P, Goethe R (2006) Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 188:361–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Group 17. Gram-Positive Cocci. In: Hensyl WR (ed) Bergey’s Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins Co., Maryland, pp 277–310

    Google Scholar 

  • Huygen R, Crabeel M, Glansdorff N (1987) Nucleotide sequence of the ARG3 gene of the yeast Saccharomyces cerevisiae encoding ornithine carbamoyltransferase. Eur J Biochem 166:371–377

    Article  CAS  PubMed  Google Scholar 

  • Imada A, Igarasi S, Nakahama K, Isono M (1973) Asparaginase and glutaminase activities of microorganisms. J Gen Microbiol 76:85–99

    Article  CAS  PubMed  Google Scholar 

  • Kaur B, Kaur R (2012) Statistical screening of media components for the production of arginine deiminase by Weissella confusa GR7. Int J Food Ferm Tech 2(3):81–89

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evo 16:111–120

    Article  CAS  Google Scholar 

  • Lam MMC, Seemann T, Bulach DM, Gladman SL, Chen H, Volker Haring V, Moore RJ, Ballard S, Grayson ML, Johnson PDR, Howden BP, Stineara TP (2012) Comparative analysis of the first complete Enterococcus faecium genome. J Bacteriol 194(9):2334–2341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Cao Y, Qian S, Liu Y, Liu Q, Jiao Q (2006) Study on fermentation process of arginine deiminase producing strain. Chemical Reaction Engineering and Technology 22(1):43–47

  • Liu SQ, Pritchard GG, Hardman MJ, Pilone GJ (1996) Arginine catabolism in wine lactic acid bacteria: is it via the arginine deiminase pathway or the arginase-urease pathway? J Appl Bacteriol 81:486–492

    CAS  Google Scholar 

  • Liu Y, Dong Y, Chen YYM, Burne RA (2008) Environmental and growth phase regulation of the Streptococcus gordonii arginine deiminase genes. Appl Environ Microbiol 74:5023–5030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackey JK, Beck RW (1968) Activities of arginine dihydrolase and phosphate in Streptococcus faecalis and Streptococcus faecium. Appl Microbiol 16:1543–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maghnouj A, Abu-Bakr AA, Baumberg S, Stalon V, Vander WC (2000) Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family. FEMS Microbiol Lett 191:227–234

    Article  CAS  PubMed  Google Scholar 

  • Mittal N, Saxena G, Mukerji KG (1995) Integrated control of root-knot disease in three crop plants using chitin and Paecilomyces lilacinus. Crop Prot 14:647–651

    Article  Google Scholar 

  • Montel MC, Champomier MC (1987) Arginine catabolism in Lactobacillus sakei isolated from meat. Appl Environ Microbiol 53:2683–2685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosqueda G, Van Den Broeck G, Saucedo O, Bailey AM, Alvarez-Morales A, Herrera-Estrella L (1990) Isolation and characterization of the gene from Pseudomonas syringae pv. phaseolicola encoding the phaseolotoxin insensitive ornithine carbamoyltransferase. Mol Gen Genet 222:461–466

    Article  CAS  PubMed  Google Scholar 

  • Niven CF, Smiley KL, Sherman JM (1942) The Hydrolysis of arginine by streptococci. J Bacteriol 6:651–660

    Google Scholar 

  • Ohtani K, Bando M, Swe T, Banu S, Oe M, Hayashi H, Shimizu T (1997) Collagenase gene colA is located in the 3_-flanking region of the perfringolysin O pfo A locus in Clostridium perfringens. FEMS Microbiol Lett 146:155–159

    Article  CAS  PubMed  Google Scholar 

  • Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Cell Inf Microbiol 2:1–15

    Google Scholar 

  • Poolman B, Driessen AJM, Konings WN (1987) Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J Bacteriol 169:5597–5604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruepp A, Soppa J (1996) Fermentative arginine degradation in Halobacterium salinarum (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster. J Bacteriol 178:4942–4947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saavedra L, Taranto MP, de Sesma F, Valdez GF (2003) Homemade traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int J Food Microbiol 88:241–245

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 4:406–425

    CAS  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RG, Wood WA, Krieg NR (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington DC, pp 611–654

    Google Scholar 

  • Spano G, Massa S, Arena ME, Manca de Nadra MC (2007) Arginine metabolism in wine Lactobacillus plantarum: in vitro activities of the enzymes arginine deiminase (ADI) and ornithine transcarbamilase (OTCase). Ann Microbiol 57:67–70

    Article  CAS  Google Scholar 

  • Szende B, Tyihák E, Trézl L (2001) Role of arginine and its methylated derivatives in cancer biology and treatment. Cancer Cell Int 1:1475–1480

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Bio Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Van den Hoff MJ, Jonker A, Beintema JJ, Lamers WH (1995) Evolutionary relationships of the carbamoylphosphate synthetase genes. J Mol Evol 41:813–832

    Article  PubMed  Google Scholar 

  • Vrancken G, Rimaux T, Weckx S, De Vuyust L, Leroy F (2009) Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 130101. Int J Food Micrbiol 135:216–222

    Article  CAS  Google Scholar 

  • Zuniga M, Champomier-Verges M, Zagorec M, Perez-Martinez G (1998) Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sakei. J Bacteriol 180:4154–4159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuniga M, Miralles MC, Perez-Martinez G (2002) The product of arcR, the sixth gene of the arc Operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. App Env Microbiol 68:6051–6058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge UGC, New Delhi (India) for funding the Maulana Azad National Fellowship for Minority Students No.F.40-116(M/S)/2009(SA-III/MANF) to Mrs. Rajinder Kaur.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljinder Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Kaur, R. Isolation, identification and genetic organization of the ADI operon in Enterococcus faecium GR7. Ann Microbiol 65, 1427–1437 (2015). https://doi.org/10.1007/s13213-014-0981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0981-1

Keywords

Navigation