Skip to main content

Advertisement

Log in

Isolation and characterization of Listeria monocytogenes from tropical seafood of Kerala, India

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Listeria monocytogenes, which is an intracellular pathogen, causes various illnesses in human as well as in animals. The pathogenicity of this organism depends upon the presence of different virulence genes. A total of 324 tropical seafood and fishery environmental samples were screened for L. monocytogenes. The incidence of the human pathogenic species L. monocytogenes was 1.2 % of the samples. Listeria spp. was detected in 32.3, 27.1, and 5 % of fresh, frozen, and dry fish samples, respectively. Listeria innocua was found to be the most prevalent species of Listeria in the tropical seafood and environmental samples of Kerala. Listeria monocytogenes and L. innocua isolates were confirmed by multiplex PCR. L. monocytogenes isolates from the four positive samples showed phosphatidylinositol-specific phospholipase C reaction on Chromocult® Listeria selective agar. Molecular characterization of L. monocytogenes isolates for virulence genes revealed the presence of β-hemolysin (hly), plcA, actA, metalloprotease (mpl), iap and prfA genes in all the isolates recovered from the positive samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bhujwala RA, Hingorani V, Chandra RK (1973) Genital listeriosis in Delhi (India): a pilot study. Indian J Med Res 61:1284–1288

    PubMed  CAS  Google Scholar 

  • Border PM, Howard JJ, Plastow GS, Siggens KW (1990) Detection of Listeria spp. and Listeria monocytogenes using polymerase chain reaction. Lett Appl Microbiol 11:158–162

    Article  PubMed  CAS  Google Scholar 

  • Bubert A, Hein I, Rauch M, Lehner A, Yoon B, Goebel W, Wagner M (1999) Detection and differentiation of Listeria spp. by a single reaction based multiplex PCR. Appl Environ Microbiol 65:4688–4692

    PubMed  CAS  Google Scholar 

  • CDC (2012) Multistate outbreak of Listeriosis associated with Jensen farms cantaloupe—United States, August-September, 2011. Accessed through http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/082712/ on 25th October, 2012

  • Chakraborty T, Leimeister-Wachter M, Domann E, Hartl M, Goebel W, Nichterlein T, Notermans S (1992) Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prf A gene. J Bacteriol 194:568–574

    Google Scholar 

  • CIDRAP (2010) Texas Listeria outbreak prompts produce recall. Center for Infectious Disease Research and Policy. University of Minnesota. Accessed online through http://www.cidrap.umn.edu/cidrap/content/fs/food-disease/news/oct2110celery.html on 16th February, 2012

  • Das S, Surendran PK, Thampuran N (2010) Detection and differentiation of Listeria monocytogenes and Listeria innocua by multiplex PCR. Fish Technol 47:91–94

    CAS  Google Scholar 

  • Dhanashree B, Otta SK, Karunasagar I, Goebel W, Karunasagar I (2003) Incidence of Listeria spp. in clinical and food samples in Mangalore, India. Food Microbiol 20:447–453

    Article  Google Scholar 

  • Domann E, Leimeister-Wachter M, Goebel W, Chakraborty T (1991) Molecular cloning, sequencing and identification of metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to listeriolysin gene. Infect Immun 59:65–72

    PubMed  CAS  Google Scholar 

  • Ericsson H, Eklow A, Danielsson-Tham M-L, Loncarevic S, Mentzing L-O, Persson I, Unnerstad H, Tham W (1997) An outbreak of listeriosis suspected to have been caused by rainbow trout. J Clin Microbiol 35:2904–2907

    PubMed  CAS  Google Scholar 

  • Fitter S, Heuzenroeder M, Thomas CJ (1992) A combined PCR and selective enrichment method for rapid detection of Listeria monocytogenes. J Appl Bacteriol 73:53–59

    Article  PubMed  CAS  Google Scholar 

  • Fuchs RS, Surendran PK (1989) Incidence of Listeria in tropical fish and fishery products. Lett Appl Microbiol 9:49–51

    Article  Google Scholar 

  • Furrer B, Candrian U, Hoefelein C, Luethy J (1991) Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol 70:372–379

    Article  PubMed  CAS  Google Scholar 

  • Griffiths MW (1989) Listeria monocytogenes: its importance in the dairy industry. J Sci Food Agric 47:133–158

    Article  Google Scholar 

  • Guillet C, Join-Lambert O, Le Monnier A, Leclercq A, Mechaï F, Mamzer-Bruneel M-F, Bielecka MK, Scortti M, Disson O, Berche P, Vazquez-Boland J, Lortholary O, Lecuit M (2010) Human listeriosis caused by Listeria ivanovii. Emerg Infect Dis 16:136–138

    Article  PubMed  CAS  Google Scholar 

  • Herman LMF, De Block JHGE, Moermans RJB (1995) Direct detection of Listeria monocytogenes in 25 milliliters of raw milk by a two step PCR with nested primers. Appl Environ Microbiol 61:817–819

    PubMed  CAS  Google Scholar 

  • Hitchins AD (1998) Detection and enumeration of Listeria monocytogenes in foods. In: Bacteriological analytical manual, chap. 10. Centre for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD

  • Hoelzer K, Pouillot R, Dennis S (2012) Animal models of listeriosis: a comparative review of current state of the art and lesions learned. Vet Res 43:18

    Article  PubMed  Google Scholar 

  • Jeyasekaran G, Karunasagar I, Karunasagar I (2003) Occurrence of Listeria spp. in seafood handling environments. Indian J Fish 50:211–214

    Google Scholar 

  • Junttila JR, Niemala SI, Hirn J (1988) Minimum growth temperature of Listeria monocytogenes and non-hemolytic listeria. J Appl Bacteriol 65:321–327

    Article  PubMed  CAS  Google Scholar 

  • Kuhn M, Kathariou S, Goebel W (1988) Hemolysin supports survival but not entry of intracellular bacterium Listeria monocytogenes. Infect Immun 57:55–61

    Google Scholar 

  • Linnan MJ, Mascola L, Lou XD, Goulet V, May S, Salminen C, Hird DW, Yonekura ML, Hayes P, Weaver R, Audurier A, Plikaytis BD, Fannin SL, Kleks A, Broome CV (1988) Epidemic listeriosis associated with Mexican style cheese. N Engl J Med 319:823–828

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Ainsworth AS, Austin FW, Lawrence ML (2003) Identification of Listeria innocua by PCR targeting putative transcriptional regulator gene. FEMS Microbiol Lett 223:205–210

    Article  PubMed  CAS  Google Scholar 

  • Malik SVS, Barbuddhe SB, Chaudhari SP (2002) Listeric infections in humans and animals in the Asian subcontinent: a review. Trop Anim Health Prod 34:359–381

    Article  PubMed  CAS  Google Scholar 

  • Mereghetti L, Quentin R, Marquet-Vander Mee N, Audurier A (2000) Low sensitivity of Listeria monocytogenes to quaternary ammonium compounds. Appl Environ Microbiol 66:5083–5086

    Article  PubMed  CAS  Google Scholar 

  • Moharem AS, Raj APC, Janardhana GR (2007) Incidence of Listeria species in seafood products of Mysore, India. J Food Saf 27:362–372

    Article  CAS  Google Scholar 

  • Notermans SHW, Dufrenne J, Leimeister-Wachter M, Domann E, Chakraborty T (1991) Phosphatidylinositol-specific phospholipase C activity as a marker to distinguish between pathogenic and non-pathogenic Listeria species. Appl Environ Microbiol 57:2666–2670

    PubMed  CAS  Google Scholar 

  • Paziak-Domanska B, Bogulawska E, Wiekowska-Szakiel M, Kotlowski R, Rozalska B, Chmiela M, Kur J, Dabrowski W, Rudnicka W (1999) Evaluation of the API test, phosphatidylinositol-specific phospholipase C activity and PCR method in identification of Listeria monocytogenes in meat foods. FEMS Microbiol Lett 171:209–214

    Article  PubMed  CAS  Google Scholar 

  • Rawool DB, Malik SVS, Shakuntala I, Sahara AM, Barbuddhe SB (2007) Detection of multiple virulent associated genes in Listeria monocytogenes isolated from bovine mastitits cases. Int J Food Microbiol 113:201–207

    Article  PubMed  CAS  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowso M-A, Roy SL, Jones JL, Griffin PM (2011) Food-borne illnesses acquired in the United States-Major pathogens. Emerg Infect Dis 17:7–15

    PubMed  Google Scholar 

  • Scotter SL, Langton S, Lombard B, Schulten S, Nagelkere N, Int Veld PH, Rollier P, Lahellec C (2001) Validation of ISO method 11290 Part 1- Detection of Listeria monocytogenes in foods. Int J Food Microbiol 64:295–306

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domińguez-Bernal G, Goebel W, GonzáLez-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    Article  PubMed  Google Scholar 

  • Zameer F, Gopal S, Krohne G, Kreft J (2010) Development of a biofilm model for Listeria monocytogenes EGD-e. World J Microbiol Biotechnol 26:1143–1147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this manuscript are thankful to the Director, Central Institute of Fisheries Technology for providing necessary facilities for carrying out this work. The authors also show their deep sense of gratitude to Dr. S.B. Barbuddhe, Senior Scientist, ICAR Research Complex, Goa for kindly donating two isolates of L. monocytogenes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Lalitha, K.V., Thampuran, N. et al. Isolation and characterization of Listeria monocytogenes from tropical seafood of Kerala, India. Ann Microbiol 63, 1093–1098 (2013). https://doi.org/10.1007/s13213-012-0566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0566-9

Keywords

Navigation