Skip to main content
Log in

Microbial biomass and activity down the soil profile after long-term addition of farmyard manure to a sandy soil

  • Published:
Organic Agriculture Aims and scope Submit manuscript

Abstract

Long-term application effects of cattle farmyard manure (CM) without and with biodynamic preparations (CMBD) on basal respiration, 0.5 M K2SO4 extractable C and the relationships of microbial biomass C (MBC) estimates by chloroform fumigation extraction (CFE) and substrate-induced respiration (SIR) were evaluated down to 1 m depth. The contents of total N, K2SO4 extractable C and MBC-CFE declined with depth from 0–25 to 90–100 cm by −82, −47 and 86%, respectively. The contents of these three soil properties were always 17% lower in the mineral fertilization (MIN) treatment than in the CM and CMBD treatments. However, these differences were not always significant. The MBC-SIR/CFE ratio varied around 1 and did not show a significant depth gradient, due to the strong layer-to-layer variation within each treatment, although this ratio was generally 25% lower in the subsoil than in the topsoil. The metabolic quotient qCO2, i.e. the ratio of basal respiration to MBC, was positively affected by the MBC-SIR/CFE ratio, soil pH and K2SO4 extractable C and negatively by total N. Long-term application of farmyard manure, especially in the CMBD treatment, resulted in a subsoil microbial community with a more efficient use of SOC and glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abele U (1987) Produktqualität und Düngung - mineralisch, organisch, biologisch-dynamisch. Schriftenreihe des Bundesministers für Ernährung, Landwirtschaft und Forsten. Heft 345, Münster Hiltrup

  • Anderson TH (2003) Microbial eco-physiological indicators to asses soil quality. Agric Ecosyst Environ 98:285–293

    Article  Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395

    Article  Google Scholar 

  • Anderson TH, Domsch KH (2010) Soil microbial biomass: the eco-physiological approach. Soil Biol Biochem 42:2039–2043

    Article  CAS  Google Scholar 

  • Anderson TH, Joergensen RG (1997) Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biol Biochem 29:1033–1042

    Article  CAS  Google Scholar 

  • Bachinger J (1996) Der Einfluss unterschiedlicher Düngerarten (mineralisch, organisch, biologisch-dynamisch) auf die zeitliche Dynamik und räumliche Verteilung von bodenchemischen und -mikrobiologischen Parametern der C- und N-Dynamik sowie auf das Pflanzen- und Wurzelwachstum vom Winterroggen. Schriftenreihe: Band 7. IBDF, Darmstadt

  • Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032

    Article  CAS  Google Scholar 

  • Blume HP, Stahr K, Leinweber P (2011) Bodenkundliches Praktikum, 3 ed. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  PubMed  Google Scholar 

  • Brookes PC, Joergensen RG (2006) Microbial biomass measurements by fumigation-extraction. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality. CABI, Wallingford, pp. 77–83

    Google Scholar 

  • Chen Y, Chen G, Robinson D, Yang Z, Gu J, Xie J, Fu S, Zhou L, Yang Y (2016) Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes. Soil Biol Biochem 95:233–242

    Article  CAS  Google Scholar 

  • Dilly O (2006) Ratios of microbial biomass estimates to evaluate microbial physiology in soil. Biol Fertil Soils 42:241–246

    Article  Google Scholar 

  • Dilly O, Munch JC (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biol Fertil Soils 27:374–379

    Article  CAS  Google Scholar 

  • Eberhardt U, Apel G, Joergensen RG (1996) Effects of direct chloroform-fumigation on suspended cells of 14C and 32P labelled bacteria and fungi. Soil Biol Biochem 28:677–679

    Article  CAS  Google Scholar 

  • Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    Article  CAS  Google Scholar 

  • Ekelund F, Ronn R, Christensen S (2001) Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol Biochem 33:475–481

    Article  CAS  Google Scholar 

  • Embacher A, Zsolnay A, Gattinger A, Munch JC (2008) The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem. Geoderma 148:63–69

    Article  CAS  Google Scholar 

  • Esperschütz J, Gattinger A, Mäder P, Schloter M, Fließbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61:26–37

    Article  PubMed  Google Scholar 

  • FAO-WRB (2014) World reference base for soil resources. In: World soil resources reports no. 103. FAO, Rome

    Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  PubMed  Google Scholar 

  • Greenfield LG (1995) Release of microbial cell N during chloroform fumigation. Soil Biol Biochem 21:1235–1236

    Article  Google Scholar 

  • Gunina A, Dippold M, Glaser B, Kuzyakov Y (2014) Fate of low molecular weight organic substances in an arable soil: from microbial uptake to utilisation and stabilisation. Soil Biol Biochem 77:304–313

    Article  CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  PubMed  Google Scholar 

  • Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116:191–195

    Article  Google Scholar 

  • Heinze S, Raupp J, Joergensen RG (2010) Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 328:203–215

    Article  CAS  Google Scholar 

  • Heitkamp F, Raupp J, Ludwig B (2009) Impact of fertilizer type and rate on carbon and nitrogen pools in a sandy Cambisol. Plant Soil 319:259–275

    Article  CAS  Google Scholar 

  • Höper H (2006) Substrate-induced respiration. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality. CABI, Wallingford, pp. 84–92

    Google Scholar 

  • Höper H, Kleefisch B (2001) Untersuchung bodenbiologischer Parameter im Rahmen der Boden-Dauerbeobachtung in Niedersachsen – Bodenbiologische Referenzwerte und Zeitreihen. Arbeitshefte Boden 2001/4, NLfB, Hannover

  • Hoffmann B, Müller T, Joergensen RG (2010) Carbon dioxide production and oxygen consumption during the early decomposition of different litter types over a range of temperatures in soil-inoculated quartz sand. J Plant Nutr Soil Sci 173:217–223

    Article  CAS  Google Scholar 

  • Jenkinson DS, Poulton PR, Bryant C (2008) The turnover of organic carbon in subsoils. Part 1. Natural and bomb radiocarbon in soil profiles from the Rothamsted long-term field experiments. Eur J Soil Sci 59:391–399

    Article  CAS  Google Scholar 

  • Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the k EC value. Soil Biol Biochem 28:25–31

    Article  CAS  Google Scholar 

  • Joergensen RG (2010) Organic matter and micro-organisms in tropical soils. In: Dion P (ed) Soil biology and agriculture in the tropics. Springer, Berlin, pp. 17–44

    Chapter  Google Scholar 

  • Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309

    Article  CAS  Google Scholar 

  • Joergensen RG, Olfs HW (1998) The variability between different analytical procedures and laboratories for measuring soil microbial biomass C and biomass N by the fumigation extraction method. Z Pflanzenernähr Bodenk 161:51–58

    Article  CAS  Google Scholar 

  • Joergensen RG, Raubuch M (2002) Adenylate energy charge of a glucose-treated soil without adding a nitrogen source. Soil Biol Biochem 34:1317–1324

    Article  CAS  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977--2991

  • Jörgensen RG, Raubuch M, Brandt M (2002) Soil microbial properties down the profile of a black earth buried by colluvium. J Plant Nutr Soil Sci 165:274–280

    Article  Google Scholar 

  • Joergensen RG, Mäder P, Fließbach A (2010) Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol Fertil Soils 46:303–307

    Article  CAS  Google Scholar 

  • Joergensen RG, Wu J, Brookes PC (2011) Measuring soil microbial biomass using an automated procedure. Soil Biol Biochem 43:873–876

    Article  CAS  Google Scholar 

  • Kätterer T, Börjesson G, Kirchmann H (2014) Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agric Ecosyst Environ 189:110–118

    Article  Google Scholar 

  • Kaiser EA, Heinemeyer O (1993) Seasonal variations of soil microbial biomass carbon within the plough layer. Soil Biol Biochem 25:1649–1655

    Article  Google Scholar 

  • Kaiser EA, Mueller T, Joergensen RG, Insam H, Heinemeyer O (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem 24:675–683

    Article  CAS  Google Scholar 

  • Kaiser K, Kalbitz K (2012) Cycling downwards—dissolved organic matter in soils. Soil Biol Biochem 52:29–32

    Article  CAS  Google Scholar 

  • Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R, Javaux M, Kemna A, Kuzyakov Y, Munch JC, Pätzold S, Peth S, Scherer HW, Schloter M, Schneider H, Vanderborght J, Vetterlein D, Walter A, Wiesenberg GLB, Köpke U (2013) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003–1022

    Article  CAS  Google Scholar 

  • Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG (2016) Fungal and bacterial residues and their relationships to the C/N/P/S ratio of soil organic matter and microbial biomass. Geoderma 271:115–123

    Article  CAS  Google Scholar 

  • Koepf HH, Schaumann W, Haccius M (1990) Bio-dynamic agriculture: an introduction. Anthroposophic Press, Hudson

    Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Lavahun MFE, Joergensen RG, Meyer B (1996) Activity and biomass of soil microorganisms at different depths. Biol Fertil Soils 23:38–42

    Article  Google Scholar 

  • Liang C, Balser TC (2008) Preferential sequestration of microbial carbon in subsoils of a glacial-landscape toposequence, Dane County, WI, USA. Geoderma 148:113–119

    Article  CAS  Google Scholar 

  • Ludwig B, Schulz E, Merbach I, Rethemeyer J, Flessa H (2007) Predictive modelling of the C dynamics for eight variants of the long-term static fertilization experiment in Bad Lauchstädt using the Rothamsted Carbon Model. Eur J Soil Sci 58:1155–1163

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  • Ogilvie LA, Hirsch PR, Johnston AWB (2008) Bacterial diversity of the Broadbalk ‘classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microb Ecol 56:525–537

    Article  PubMed  Google Scholar 

  • Rasul G, Khan AA, Khan KS, Joergensen RG (2009) Immobilization and mineralization of nitrogen in a saline and alkaline soil during microbial use of sugarcane filter cake amended with glucose. Biol Fertil Soils 45:289–296

    Article  CAS  Google Scholar 

  • Raupp J (2001) Manure fertilisation for soil organic matter maintenance and its effects upon crops and the environment, evaluated in a long-term trial. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CABI, Wallingford, pp. 301–308

    Google Scholar 

  • Raupp J, Oltmanns M (2006a) Farmyard manure, plant based organic fertilisers, inorganic fertiliser—which sustains soil organic matter best? Asp Appl Biol 79:273–276

    Google Scholar 

  • Raupp J, Oltmanns M (2006b) Soil properties, crop yield and quality with farmyard manure with and without biodynamic preparations and with inorganic fertilizers. In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Longterm field experiments in organic farming. ISOFAR scientific series. Verlag Dr. Köster, Berlin, pp. 135–155

    Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2010a) The microbial PLFA composition as affected by pH in an arable soil. Soil Biol Biochem 42:516–520

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010b) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  • Sanaullah M, Chabbi A, Leifeld J, Bardoux G, Billou D, Rumpel C (2011) Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil 338:127–141

    Article  CAS  Google Scholar 

  • Scheller E (2013) Grundzüge einer Pflanzenernährung des ökologischen Landbaus. - Ein Fragment. Verlag Lebendige Erde, Darmstadt

    Google Scholar 

  • Sradnick A, Oltmanns M, Raupp J, Joergensen RG (2014) Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil. Geoderma 226-227:79–84

    Article  CAS  Google Scholar 

  • Struecker J, Joergensen RG (2015) Microorganisms and their substrate utilization patterns in topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to colluvial processes. Soil Biol Biochem 91:310–317

    Article  CAS  Google Scholar 

  • Sun HY, Koal P, Gerl G, Schroll R, Joergensen RG,. Munch JC (2016) Water extractable organic matter and its fluorescence fractions in response to minimum tillage and organic farming in a Cambisol. Geoderma (submitted)

  • Yang FY, Li GZ, Zhang DE, Christie P, Li XL, Gai JP (2010) Geographical and plant genotype effects on the formation of arbuscular mycorrhiza in Avena sativa and Avena nuda at different soil depths. Biol Fertil Soils 46:435–443

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • West AW, Sparling GP (1986) Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of different water contents. J Microbiol Meth 5:177–189

    Article  CAS  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Zhang M, He Z, Zhao A, Zhang H, Endale DM, Schomberg HH (2011) Water-extractable soil organic carbon and nitrogen affected by tillage and manure application. Soil Sci 176:307–312

    Article  CAS  Google Scholar 

  • Zmora-Nahum S, Hadar Y, Chen Y (2007) Physico-chemical properties of commercial composts varying in their source materials and country of origin. Soil Biol Biochem 39:1263–1276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance of Gabriele Dormann is highly appreciated. This project was supported by a grant from the Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture’ of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Georg Joergensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sradnick, A., Oltmanns, M., Raupp, J. et al. Microbial biomass and activity down the soil profile after long-term addition of farmyard manure to a sandy soil. Org. Agr. 8, 29–38 (2018). https://doi.org/10.1007/s13165-016-0170-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13165-016-0170-6

Keywords

Navigation