Skip to main content
Log in

CH4 and CO2 from Decomposition of Salvinia auriculata Aublet, a Macrophyte with High Invasive Potential

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Tropical floodplain wetlands are favorable environments for the growth of aquatic macrophytes and palustrine plants. Such plants and phytoplankton are usually the key sources of autochthonous detritus within floodplain lakes. An experiment was conducted in order to compare the production of methane (CH4) and carbon dioxide (CO2) from anaerobic decomposition of Salvinia auriculata. The incubations were prepared and maintained (138 d) at 4 different temperatures (15.3, 20.8, 25.7 and 30.3 °C), and the daily rates of CH4 and CO2 were measured by gas chromatography. Periodically, the dissolved organic carbon, electrical conductivity, pH and redox potential were also measured. The anaerobic mineralization of S. auriculata was a sensitive process with respect to temperature, and CH4 was the minor product (CH4 yield: 0 to 5.1 % of C-emissions). The Q10 calculated for mineralization was 1.16, and. after 138d, the CO2 yields were closed (average: 23.6 %). The CH4 was a secondary end product of S. auriculata mineralization, making CO2 the main greenhouse gas produced from this source. The increase in temperature should favor the formation of CH4 and shorten the time required for their formation. However, due to the large difference between the yields, CO2 should remain the main end product of decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ballester MVR, Santos JE (2001) Biogenic gases (CH4, CO2 and O2) distribution in a riverine wetland system. Oecologia Brasiliensis 9:21–31

    Article  Google Scholar 

  • Bianchini I Jr, Cunha-Santino MB (2014) Dynamics of colonization and the collapse of a macrophyte community during the formation of a tropical reservoir. Fundamental and Applied Limnology 184:141–150

    Article  Google Scholar 

  • Bianchini I Jr, Cunha-Santino MB, Romeiro F, Bitar AL (2010) Emissions of methane and carbon dioxide during anaerobic decomposition of aquatic macrophytes from a tropical lagoon (São Paulo, Brazil). Acta Limnolica Brasiliensia 22:157–164

    Article  Google Scholar 

  • Bianchini I Jr, Cunha-Santino MB, Panhota RS (2011) Oxygen uptake from aquatic macrophyte decomposition from Piraju Reservoir (Piraju, SP, Brazil). Brazilian Journal of Biology 71:27–35

    Article  Google Scholar 

  • Bianchini I Jr, Cunha-Santino MB, Milan JAM, Rodrigues CJ, Dias JHP (2015) Model parameterization for the growth of three submerged aquatic macrophytes. Journal of Aquatic Plant Management 53:64–73

    Google Scholar 

  • Bini LM, Thomaz SM, Murphy KJ, Camargo AFM (1999) Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir Brazil. Hydrobiologia 415:147–154

    Article  Google Scholar 

  • Bloom AA, Palmer PI, Fraser A, Reay DS (2012) Seasonal variability of tropical wetland CH4 emissions: the role of the methanogen-available carbon pool. Biogeosciences 9:2821–2830

    Article  CAS  Google Scholar 

  • Boschilia SM, Thomaz SM, Piana PA (2006) Plasticidade morfológica de Salvinia herzogii (de La Sota) em resposta à densidade populacional. Acta Scientiarum Biological Sciences 28:35–39

    Google Scholar 

  • Bowie GL, Mills WB, Porcella DB, Campbell CL, Pagenkopf JR, Rupp GL, Johnson KM, Chan PWH, Gherini SA, Chamberlin CE (1985) Rates, constants, and kinetics formulations in surface water quality modeling, 2nd ed. United States Environmental Protection Agency, EPA/600/3-85/040. Government Printing Office, Athens

  • Camargo AFM, Esteves FA (1995) Influence of water level variation on fertilization oxbow lake of Rio Mogi-Guaçu, State of São Paulo, Brazil. Hydrobiologia 299:185–193

    Article  CAS  Google Scholar 

  • Cunha-Santino MB, Bianchini I Jr (2007) Cellulase activities during decomposition of a submerged aquatic macrophyte (Utricularia breviscapa): a microcosm assay. Brazilian Journal of Microbiology 38:230–236

    Article  Google Scholar 

  • Cunha-Santino MB, Bianchini I Jr (2008) Carbon cycling potential from Utricularia breviscapa decomposition in a tropical oxbow lake (São Paulo, Brazil). Ecological Modelling 218:375–382

    Article  Google Scholar 

  • Cunha-Santino MB, Bianchini I Jr (2013) Tropical macrophyte degradation dynamics in freshwater sediments: relationship to greenhouse gas production. Journal of Soils and Sediments 13:1461–1468

    Article  Google Scholar 

  • Cunha-Santino MB, Bianchini I Jr, Gianotti EP, Silva EL (2006) Degradação anaeróbia de macrófitas aquáticas da lagoa do Infernão: metanogênese. In: Santos JE, Pires JSR, Moschini LE (eds) Estudos integrados em ecossistemas – Estação Ecológica de Jataí. São Carlos: EDUFSCar. 4:143–158

  • Debusk WF, Reddy KR (2005) Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry 75:217–240

    Article  Google Scholar 

  • Duke ST, Francoeur SN, Judd KE (2015) Effects of Phragmites australis invasion on carbon dynamics in a freshwater marsh. Wetlands 35:311–321

    Article  Google Scholar 

  • El-Shinnawi MM, Alaa El-Din MN, El-Shimi SA, Badawi MA (1989) Biogas production from crop residues and aquatic weeds. Resources, Conservation and Recycling 3:33–45

    Article  Google Scholar 

  • Erhagen B, Öquist M, Sparrman T, Haei M, Ilstedt U, Hedenström M, Schleucher J, Nilsson MB (2013) Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material. Global Change Biology 19:3858–3871

    Article  PubMed  Google Scholar 

  • Fernández OA, Sutton DL, Lallana VH, Sabbatini MR, Irigoyen FH (1990) Aquatic weeds problems and management in South and Central America. In: Pieterse AH, Murphy KJ (eds) Aquatic weeds. The ecology and management of nuisance aquatic vegetation. Oxford University Press, New York, pp 406–425

    Google Scholar 

  • Fushita AT, Santos JE (2015) Landscape heterogeneity and complexity in river floodplain ecosystems. Sky Journal of Soil Science and Environmental Management 4:94–104

    Google Scholar 

  • Gedney N, Cox PM, Huntingford C (2004) Climate feedback from wetland methane emissions. Geophysical Research Letters 31, L20503

    Article  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  • Gianotti EP, Santos JE (2000) Estimativas das taxas de desnitrificação e da densidade de bactérias desnitrificantes na lagoa do Infernão (Estação Ecológica de Jataí, Luiz Antônio, SP). In: Santos JE, Pires JSR (eds) Estudos Integrados em Ecossistemas - Estação Ecológica de Jataí. RiMa Editora, São Carlos, pp 667–674

    Google Scholar 

  • Gopal B (1990) Nutrient dynamics of aquatic plant communities. In: Gopal B (ed) Ecology and management of aquatic vegetation in the Indian subcontinent. Kluwer, Dordrecht, pp 177–197

    Chapter  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics package for education and data analysis. Palaeontologica Electronica 4:1–9

    Google Scholar 

  • Hanamachi Y, Hama T, Yanai T (2008) Decomposition process of organic matter derived from freshwater phytoplankton. Limnology 9:57–69

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.). Cambridge, Cambridge University Press

  • Jacono CC, Davern TR, Center TD (2001) The adventive status of Salvinia minima and S. molesta in the Southern United States and the related distribution of the weevil Cyrtobagous salviniae. Castanea 66:214–226

    Google Scholar 

  • Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects approaches and applications – an update. In: Welcomme RL, Petr T (eds.) Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries: Vol. 2. Food and Agriculture Organization & Mekong River Commission. FAO Regional Office for Asia and the Pacific, Bangkok, pp 117–140

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river - floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106:110–127

    Google Scholar 

  • Junk W, An S, Finlayson C, Gopal B, Květ J, Mitchell S, Mitsch W, Robarts R (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75:151–167

    Article  CAS  Google Scholar 

  • Kätterer T, Reichstein M, Andrén O, Lomander A (1998) Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biology and Fertility of Soils 27:258–262

    Article  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. The Annual Review of Microbiology 49:399–426

    Article  CAS  PubMed  Google Scholar 

  • Lolis SL (2008) Macrófitas aquáticas do reservatório Luís Eduardo Magalhães - Lajeado - Tocantins: biomassa, composição da comunidade e riqueza de espécies. Ph.D. Thesis. Universidade Estadual de Maringá

  • Martins D, Costa NV, Terra MA, Marchi SR (2008) Caracterização da comunidade de plantas aquáticas de dezoito reservatórios pertencentes a cinco bacias hidrográficas do Estado de São Paulo. Planta Daninha 26:17–32

    Article  Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: Linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 17–424

    Google Scholar 

  • Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology 10:530–544

    Article  Google Scholar 

  • Merritt RW, Lawson DL (1992) The role of leaf litter macroinvertebrates in streams-floodplain dynamics. Hydrobiologia 248:65–77

    Article  Google Scholar 

  • Mitchell DS, Tur NM (1975) The rate of growth of Salvinia molesta (S. auriculata Auct.) in laboratory and natural conditions. Journal of Applied Ecology 12:213–225

    Article  Google Scholar 

  • Neiff AP, Neiff JJ, Casco SL (2006) Leaf litter decomposition in three wetland types of the Paraná River Floodplain. Wetlands 26:558–566

    Article  Google Scholar 

  • Nozhevnikova AN, Holliger C, Ammann A, Zehnder AJB (1997) Methanogenesis in sediments from deep lakes at different temperatures (2–70 °C). Water Science and Technology 36:57–64

    Article  CAS  Google Scholar 

  • O’Sullivan C, Rounsefell B, Grinham A, Clarke W, Udy J (2010) Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba Caroliniana) and salvinia (Salvinia molesta). Ecological Engineering 36:1459–1468

    Article  Google Scholar 

  • Parsons SA, Congdon RA, Lawler IR (2014) Determinants of the pathways of litter chemical decomposition in a tropical region. New Phytologist 203:873–882

    Article  CAS  PubMed  Google Scholar 

  • Petracco P (2006) Efeito das variáveis abióticas na produção primária de Egeria najas e Utricularia breviscapada lagoa do Óleo (Estação Ecológica de Jataí, Luiz Antônio, SP). Ph.D. Thesis. Universidade Federal de São Carlos

  • Pott VP, Pott A (2000) Plantas aquáticas do Pantanal. Embrapa, Brasília

    Google Scholar 

  • Reddy KR, DeLaune R (2008) Biogeochemistry of wetlands. Science and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Romeiro F, Bianchini I Jr (2006) Anaerobic decomposition of different parts of Scirpus cubensis: kinetics and gases productions. Acta Limnologica Brasiliensia 18:145–152

    Google Scholar 

  • Sciessere L (2011) Ação das enzimas extracelulares na decomposição de macrófitas aquáticas. Ph.D. Thesis. Universidade Federal de São Carlos

  • Sciessere L, Cunha-Santino MB, Bianchini I Jr (2011) Cellulase and xylanase activity during the decomposition of three aquatic macrophytes in a tropical oxbow lagoon. Brazilian Journal of Microbiology 42:909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Tanaka RH, Cardoso LR, Martins D, Marcondes DAS, Mustafá AL (2002) Ocorrência de plantas aquáticas nos reservatórios da Companhia Energética de São Paulo. Planta Daninha 20:99–111

    Google Scholar 

  • Thomaz SM, Pagioro TA, Bini LM, Murphy KJ (2006) Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570:53–59

    Article  Google Scholar 

  • Thomaz SM, Bini LM, Souza MC, Kita KK, Camargo AFM (1999). Aquatic macrophytes of Itaipu Reservoir, Brazil: survey of species and ecological considerations. Brazilian Archives of Biology and Technology 42:15–22

  • Van Geest GJ, Coops H, Roijackers RMM, Buijse AD, Scheffer M (2005) Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. Journal of Applied Ecology 42:251–260

    Article  Google Scholar 

  • Wang Z, Zeng D, Patrick WH (1996) Methane emissions from natural wetlands. Environmental Monitoring and Assessment 42:143–161

    Article  CAS  PubMed  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology, Evolution, and Systematics 17:567–594

    Article  Google Scholar 

  • Winton RS, Richardson CJ (2015) The effects of organic matter amendments on greenhouse gas emissions from a mitigation wetland in Virginia’s Coastal Plain. Wetlands 35:969–979

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP proc. n°: 2007/002683-7; 2007/08602-9) and the Brazilian National Council for Scientific and Technological Development for the scholarships (CNPq proc. n°: 150169/2004-3; 305263/2014-5). The authors are also grateful to Dr. Alberto C. Peret (DHb-UFSCar) for helping with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irineu Bianchini Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchini, I., da Cunha-Santino, M.B. CH4 and CO2 from Decomposition of Salvinia auriculata Aublet, a Macrophyte with High Invasive Potential. Wetlands 36, 557–564 (2016). https://doi.org/10.1007/s13157-016-0765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0765-4

Keywords

Navigation