Skip to main content

Advertisement

Log in

Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: precipitation

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Precipitation changes over South Korea were projected using five regional climate models (RCMs) with a horizontal resolution of 12.5 km for the mid and late 21st century (2026-2050, 2076- 2100) under four Representative Concentration Pathways (RCP) scenarios against present precipitation (1981-2005). The simulation data of the Hadley Centre Global Environmental Model version 2 coupled with the Atmosphere-Ocean (HadGEM2-AO) was used as boundary data of RCMs. In general, the RCMs well simulated the spatial and seasonal variations of present precipitation compared with observation and HadGEM2-AO. Equal Weighted Averaging without Bias Correction (EWA_NBC) significantly reduced the model biases to some extent, but systematic biases in results still remained. However, the Weighted Averaging based on Taylor’s skill score (WEA_Tay) showed a good statistical correction in terms of the spatial and seasonal variations, the magnitude of precipitation amount, and the probability density. In the mid-21st century, the spatial and interannual variabilities of precipitation over South Korea are projected to increase regardless of the RCP scenarios and seasons. However, the changes in area-averaged seasonal precipitation are not significant due to mixed changing patterns depending on locations. Whereas, in the late 21st century, the precipitation is projected to increase proportionally to the changes of net radiative forcing. Under RCP8.5, WEA_Tay projects the precipitation to be increased by about +19.1, +20.5, +33.3% for annual, summer and winter precipitation at 1-5% significance levels, respectively. In addition, the probability of strong precipitation (≥ 15 mm d-1) is also projected to increase significantly, particularly in WEA_Tay under RCP8.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baek, H. J, and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., 49, 603–618.

    Article  Google Scholar 

  • Bao, Q., 2012: Projected changes in Asian summer monsoon in RCP scenarios of CMIP5. Atmos. Oceanic Sci. lett., 5, 43–48.

    Article  Google Scholar 

  • Byun, Y. H., and S. Y. Hong, 2007: Improvements in the subgrid-scale representation of moist convection in a cumulus parameterization scheme: The single-column test and its impact on seasonal prediction. Mon. Wea. Rev., 135, 2135–2154.

    Article  Google Scholar 

  • Casanova, S., and B. Ahrens, 2009: On the weighting of multimodel ensembles in seasonal and short-range weather forecasting. Mon. Wea. Rev., 137, 3811–3822.

    Article  Google Scholar 

  • Christensen, J. H., E. Kjellström, F. Giorgi, G. Lenderink, and M. Rummukainen, 2010: Weight assignment in regional climate models. Clim. Res., 44, 179–194.

    Article  Google Scholar 

  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model - HadGEM2. Geosci. Model Dev. Discuss., 4, 997–1062.

    Article  Google Scholar 

  • Dodla, V. B. R., S. B. Ratna, and S. Desametti, 2013: An assessment of cumulus parameterization schemes in the short range precipitation of rainfall during the onset phase of the Indian Southwest Monsoon using MM5 Model. Atmos. Res., 120-121, 249–267.

    Article  Google Scholar 

  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extreme: observation, modeling, and impacts. Science, 289, 2068–2074.

    Article  Google Scholar 

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Climate, 48, 2313–2335.

    Google Scholar 

  • Fu, C., S. Wang, Z. Xiong, W. Gutowski, D. K. Lee, J. L. Mc-Gregor, Y. Sato, H. Kato, J.-W. Kim, and M.-S. Suh, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 77, 437–471.

    Google Scholar 

  • Giorgi, F., and L. O., Mearns, 1999: Introduction to special section: regional climate modeling revisited. J. Geophys. Res., 104, 6335–6352.

    Article  Google Scholar 

  • Giorgi, F., and L. O., Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the ‘reliability ensemble averaging’ (REA) method. J. Climate, 15, 1141–1158.

    Article  Google Scholar 

  • Giorgi, F., and Coauthors, 2012: RegCM4: model description and preliminary test over multi CORDEX domains. Clim. Res., 52, 7–29.

    Article  Google Scholar 

  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stabilitydependent closure. Mon. Wea. Rev., 118, 1483–1506.

    Article  Google Scholar 

  • Gu, H., G. Wang, Z. Yu, and R. Mei, 2012: Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Climatic Change, 114, 301–317.

    Article  Google Scholar 

  • Ham, S., J. W. Lee, and K. Yoshimura, 2015: Assessing future climate changes in the East Asian summer and winter monsoon using regional spectral model. J. Meteor. Soc. Japan, 92, 69–87.

    Google Scholar 

  • Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2010: Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modeling system. Geosci. Model Dev. Discuss., 3, 1861–1937.

    Article  Google Scholar 

  • Hong, J. Y., and J. B. Ahn, 2015: Changes of early summer precipitation in the Korean peninsula and nearby regions based on RCP simulations. J. Climate, 28, 3557–3578.

    Article  Google Scholar 

  • Hong, S. Y., and H. L. Pan, 1998: Convective trigger function for a mass flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 2599- 2620.

    Article  Google Scholar 

  • Hong, S. Y., and Coauthors, 2013: The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219–243.

    Article  Google Scholar 

  • Hsu, P., T. Li, H. Murakami, and A. Kitoh, 2013: Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophy. Res., 118, 1247–1260.

    Article  Google Scholar 

  • Im, E. S., and W. T. Kwon, 2007: Characteristics of extreme climate sequences over Korea using regional climate change scenario. SOLA, 3, 17–20.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change, 81, 31–52.

    Article  Google Scholar 

  • Jeong, D. I., L. Sushama, and M. N. Khaliq, 2014: The role of temperature in drought projections over North America. Climatic Change, 127, 289–303.

    Article  Google Scholar 

  • Ji, Z., and S., Kang, 2014: Evaluation of extreme climate events using a regional climate model for China. Int. J. Climatol., 35, 888–902.

    Article  Google Scholar 

  • Jin, C. S., D. H. Cha, D. K. Lee, M. S. Suh, S. Y. Hong, H. S. Kang, and C. H. Ho, 2015: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX East Asia multi-RCM simulations. Clim. Dynam., doi:10.1007/s00382-015-2869-6.

    Google Scholar 

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170–181.

    Article  Google Scholar 

  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The presentation of cumulus convection in numerical models, Amer. Meteorol. Soc., 246 pp.

    Google Scholar 

  • Kerkhoven, E., T. Y. Gan, M. Shiiba, G. Reuter, and K. Tanaka, 2006: A comparison of cumulus parameterization schemes in a numerical weather prediction model for a monsoon rainfall event. Hydrol. Process., 20, 1961–1979.

    Article  Google Scholar 

  • Kim, C. S., M. S. Suh, and K. O. Hong, 2009: Bayesian change point analysis of the annual maximum of daily and sub-daily precipitation over South Korea. J. Climate, 22, 6741–6757.

    Article  Google Scholar 

  • Klein Tank, A. M. G., and G. P. Könnem, 2003: Trend in indices of daily temperature and precipitation extremes in Europe. J. Climate, 16, 3665–3680.

    Article  Google Scholar 

  • KMA, 2015: Production of fine-scale climate change data over the Korean peninsula using RCP scenarios. Research report (CATER 2012-3080), 822 pp.

  • Krishnamurti, T. N, C. M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 1548–1550.

    Article  Google Scholar 

  • Lee, D. K., and M. S. Suh, 2000: Ten-year East Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res., 105(D24), 29565–29577.

    Article  Google Scholar 

  • Lee, D. K., D. H., Cha, and H. S. Kang, 2004: Regional climate simulation for the 1998 summer flood over East Asia. J. Meteor. Soc. Japan, 82, 1735–1753.

    Article  Google Scholar 

  • Lee, J. W., S. Y. Hong, E. C. Chang, M. S. Suh, and H. S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dynam., 42, 733–747.

    Article  Google Scholar 

  • Li, Q., and Coauthors, 2016: Building Asian climate change scenario by multi-regional climate models ensemble. Part II: mean precipitation. Int. J. Clmatol., doi:10.1002/joc.4633.

    Google Scholar 

  • Litta, J., B. Chakrapani, and K. Mohankumar, 2007: Mesoscale simulation of an extreme rainfall event over Mumbai, India, using a high resolution MM5 model. Meteorol. Appl., 14, 291–295.

    Article  Google Scholar 

  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The coupled model intercomparison project (CMIP). Bull. Amer. Meteor. Soc., 81, 313–318.

    Article  Google Scholar 

  • Moss, R., and Coauthors, 2008: Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Technical Summary, Intergovernmental Panel on Climate Change, Geneva, 25 pp.

    Google Scholar 

  • Oh, S. G., J. H. Park, S. H. Lee, and M. S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos., 119, 2913–2927.

    Article  Google Scholar 

  • Oh, S. G., and M. S. Suh, 2015: Comparison of projection Skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution. Theor. Appl. Climatol., doi: 10.1007/s00704-016-1782-1.

    Google Scholar 

  • Oh, S. G., M. S. Suh, D. H. Cha, and S. J. Cho, 2011: Simulation skills of RegCM4 for regional climate over CORDEX East Asia driven by HadGEM2-AO. J. Korean Earth Sic. Soc., 32, 732–749 (in Korean with English abstract).

    Article  Google Scholar 

  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal to interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853–872.

    Article  Google Scholar 

  • Park, C., S. K. Min, D. Lee, D. H. Cha, and M. S., Suh, 2015: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dynam., doi:10.1007/s00382-015-2713-z.

    Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note. NCAR/TN-468+STR, National Center for Atmospheric Research, Boulder, CO, 100 pp.

    Google Scholar 

  • Seo, K. H., J. Ok, and J. H. Son, 2013: Assessing future change in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 7662–7675.

    Article  Google Scholar 

  • Suh, M. S., and D. K. Lee, 2004: Impacts of land use/cover changes on surface climate over East Asia for extreme climate cases using RegCM2. J. Geophys. Res., 109(D2), doi:10.1029/2003JD003681.

    Google Scholar 

  • Suh, M. S., S. G. Oh, Y. S. Lee, J. B. Ahn, D. H. Cha, D. K. Lee, S. K. Min, S. C. Park, and H. S. Kang, 2015: Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: Surface air temperature. Asia-Pac. J. Atmos. Sci., 52(2), doi:10.1007/s13143-016-0017-9.

    Google Scholar 

  • Suh, M. S., S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Climate, 25, 7067–7082.

    Article  Google Scholar 

  • Sung, J. H., H. S. Kang, S. Park, C. H. Cho, D. H. Bae, and Y. O. Kim, 2012: Projection of extreme precipitation at the end of 21st century over South Korea based on representative concentration pathways (RCP). Atmosphere, 22, 221–231 (in Korean with English abstract).

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106(D7), 7183–7192.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Van der Linden, P., and J. F. Mitchell, 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre Tech. Rep., 160 pp.

    Google Scholar 

  • Van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5–31.

    Article  Google Scholar 

  • Wang, S.-Y., R. R. Gillies, E. S. Takle, and W. J. Gutowski Jr., 2009: Evaluation of precipitation in the inter-mountain region as simulated by NARCCAP regional climate models. Geophys. Res. Lett., 36, L11704, doi:10.1029/2009GL037930.

    Article  Google Scholar 

  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401–1415.

    Article  Google Scholar 

  • Yoon, J. H. K. Mo, and E. F. Wood, 2012: Meteorological drought prediction based on the standard precipitation index. J. Hydrometeorology, 13, 463–482.

    Article  Google Scholar 

  • Yun, W. T., A. K. Mitra, T. S. V. V. Kumar, W. Dewar, and T. N. Krishnamurti, 2005: A multi-model synthetic superensemble algorithm for seasonal climate prediction using DEMETER forecasts. Tellus, 57, 280–289.

    Article  Google Scholar 

  • Zou, L., and T. Zhou, 2013: Near-future (2016-2040) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci., 20, 806–818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Seok Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, SG., Suh, MS., Lee, YS. et al. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: precipitation. Asia-Pacific J Atmos Sci 52, 171–189 (2016). https://doi.org/10.1007/s13143-016-0018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0018-8

Key words

Navigation