Skip to main content
Log in

Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980–2005) and another for near-future climate (2015–40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipitation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation.

RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, J., L. Sloan, and M. Snyder, 2004: Changes in extreme climate events: A future climate scenario. J. Climate, 17, 81–87.

    Article  Google Scholar 

  • Chen, H., T. Zhou, R. B. Neale, X. Wu, and G. J. Zhang, 2010: Performance of the new NCAR CAM3.5 model in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23, 3657–3675.

    Article  Google Scholar 

  • Chen, W., Z. Jiang, L. Li, and P. Yiou, 2011: Simulation of regional climate change under the IPCC A2 scenario in Southeast China. Climate Dyn., 36, 491–507.

    Article  Google Scholar 

  • Chou, C., C.-A. Chen, P.-H. Tan, and K. T. Chen, 2012: Mechanisms for global warming impacts on precipitation frequency and intensity. J. Climate, 25, 3291–3306.

    Article  Google Scholar 

  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer scheme (BATS) Version 1e as coupled to the NCAR community climate model. NCAR Tech. Note, NCAR/TN-387+STR, 72pp.

    Google Scholar 

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2335.

    Article  Google Scholar 

  • Emanuel, K. A., and M. Z. Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766–1782.

    Article  Google Scholar 

  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi: 10.1029/2005GL023272.

    Article  Google Scholar 

  • Feng, J., and C. Fu, 2006: Inter-comparison of 10-year precipitation simulated by several RCMs for Asia. Adv. Atmos. Sci., 23, 531–542, doi: 10.1007/s00376-006-0531-2.

    Article  Google Scholar 

  • Feng, L., T. Zhou, B. Wu, T. Li, and J. Luo, 2011: Projection of future precipitation changes over China with a high-resolution global atmospheric model. Adv. Atmos. Sci., 28(2), 464–476, doi: 10.1007/s00376-010-0016-1.

    Article  Google Scholar 

  • Gao, X., Z. Zhao, Y. Ding, R. Huang, and F. Giorgi, 2001: Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv. Atmos. Sci., 18, 1224–1230.

    Article  Google Scholar 

  • Gao, X., Z. Zhao, and F. Giorgi, 2002: Changes of extreme events in regional climate simulations over East Asia. Adv. Atmos. Sci., 19, 927–942.

    Article  Google Scholar 

  • Gao, X., Y. Xu, Z. Zhao, J. Pal, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol., 86, 173–185.

    Article  Google Scholar 

  • Gao, X., Y. Shi, R. Song, F. Giorgi, Y. Wang, and D. Zhang, 2008: Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteor. Atmos. Phys., 100, 73–86.

    Article  Google Scholar 

  • Gao, X., Y. Shi, and F. Giorgi, 2011: A high resolution simulation of climate change over China. Sci. China (Earth)., 54, 462–472.

    Article  Google Scholar 

  • Gao, X., Y. Shi, D. F. Zhang, and F. Giorgi, 2012: Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chinese Science Bulletin, 57, 1188–1195.

    Article  Google Scholar 

  • Giorgi, F., and M. Marinucci, 1996: An investigation of the sensitivity of simulated precipitation to the model resolution and its implication for climate studies. Mon. Wea. Rev., 124, 148–166.

    Article  Google Scholar 

  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 6335–6352.

    Article  Google Scholar 

  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794–2813.

    Article  Google Scholar 

  • Giorgi, F., M. R. Marinucci, G. T. Bates, and de C. Gerardo, 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832.

    Article  Google Scholar 

  • Giorgi, F., C. Jones, and G. R., Asrar, 2009: Addressing climate information neds at the regional level: the CORDEX framework. WMO Bulletin, 58(3), 175–183.

    Google Scholar 

  • Holtslag, A. A. M., E. I. F. de Bruijn, and H.-L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575.

    Article  Google Scholar 

  • IPCC, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

    Google Scholar 

  • Jiang, Z., J. Song, L. Li, W. Chen, Z. Wang, and J. Wang, 2012: Extreme climate events in China: IPCC-AR4 model evaluation and projection. Climate Change, 110, 385–401.

    Article  Google Scholar 

  • Jones, C., F. Giorgi, and G. Asrar, 2011: The coordinated regional downscaling experiment: CORDEX An international downscaling link to CMIP. CLIVAR Exchanges, 16(2), 34–40.

    Google Scholar 

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Breigleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR community climate model (CCM3), Tech. Rep. NCAR/TN-420+STR, National Center for Atmospheric Research, 159pp.

    Google Scholar 

  • Kim, S., E. Nakakita, Y. Tachikawa, and K. Takara, 2010: Precipitation changes in Japan under the A1B climate change scenario. Annual Journal of Hydraulic Engineering, JSCE, 54, 127–132.

    Google Scholar 

  • Kitoh, A., T. Ose, K. Kurihara, S. Kusunoki, M. Sugi, and KAKUSHIM Team-3 Modeling Group, 2009: Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: Results of preliminary experiments. Hydrological Research Letters, 3, 49–53.

    Article  Google Scholar 

  • Lee, M. H., C. H. Ho, J. Kim, and C. K. Song, 2012: Assessment of the changes in extreme vulnerability over East Asia due to global warming. Climatic Change, 113, 301–321.

    Article  Google Scholar 

  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 89–95.

    Article  Google Scholar 

  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., 34, 501–514.

    Article  Google Scholar 

  • Li, H., L. Feng, and T. Zhou, 2011: Multi-model projection of July–August climate extreme changes over China under CO2 doubling. Part I: Precipitation. Adv. Atmos. Sci., 28(2), 433–447, doi: 10.1007/s00376-010-0013-4.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013: The flexible global oceanatmosphere-land system model, Grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2140-6.

    Google Scholar 

  • Meehl, G. A., and S. Bony, 2011: Introduction to CMIP5. CLIVAR Exchanges, 162(2), 4–5.

    Google Scholar 

  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, doi: 10. 1029/2005GL023680.

    Article  Google Scholar 

  • Meehl, G. A., C. Vovey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007: The WCRP CMIP3 multimodel ensemble-A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.

    Article  Google Scholar 

  • Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105(29), 29579–29594.

    Article  Google Scholar 

  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 1395–1409.

    Article  Google Scholar 

  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius-Clapeyron constrain on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 352–363.

    Article  Google Scholar 

  • Qian, Y., and L. R. Leung, 2007: A long-term regional simulation and observations of the hydroclimate in China. J. Geophys. Res., 112, D14104, doi: 10.1029/2006JD008134.

    Article  Google Scholar 

  • Xu, Y., Y. Zhang, E. Lin, W. Lin, W. Dong, R. Jones, D. Hassell, and S. Wilson, 2006: Analyses on the climate change responses over China under SRES B2 scenario using PRECIS. Chinese Science Bulletin, 51, 2260–2267. (in Chinese)

    Article  Google Scholar 

  • Xu, Y., C. Xu, X. Gao, and Y. Luo, 2009: Projected changes in temperature and precipitation extremes over the Yangtze river basin of China in the 21st century. Quaternary International, 208, 44–52.

    Article  Google Scholar 

  • Yatagai, A., O. Arakawa, K. Kamiguchi, H. Kawamoto, M. I. Nodzu, A. Hamada, 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA, 5, 137–140.

    Article  Google Scholar 

  • Yu, R., W. Li, X. Zhang, Y. Liu, Y. Yu, H. Liu, and T. Zhou, 2000: Climatic deatures related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci., 17, 503–518.

    Article  Google Scholar 

  • Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 2628–2644.

    Article  Google Scholar 

  • Zhou, T., and R. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858.

    Article  Google Scholar 

  • Zhou, T., R. Yu, H. Li, and B. Wang, 2008: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21, 3833–3852.

    Article  Google Scholar 

  • Zou, L., T. Zhou, L. Laurent, and J. Zhang, 2010: East China summer rainfall variability of 1958–2000: Dynamical downscaling with a variable-resolution AGCM. J. Climate, 23, 6394–6408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Zou  (邹立维).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, L., Zhou, T. Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci. 30, 806–818 (2013). https://doi.org/10.1007/s00376-013-2209-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2209-x

Key words

Navigation