Skip to main content
Log in

Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    Article  Google Scholar 

  • Arora, V. K., J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi: 10.1029/2010GL046270.

    Article  Google Scholar 

  • Arzel, O., T. Ficheft, and H. Goosse, 2006: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modeling, 12, 401–415.

    Article  Google Scholar 

  • Baek, H.-J., C. Cho, W.-T. Kwon, S.-K. Kim, J.-Y. Cho, and Y. Kim, 2011: Development strategy for new climate change scenarios based on RCP. Climate Change Res., 2, 55–68 (in Korean with English abstract).

    Google Scholar 

  • Bellouin, N., O. Boucher, J. Haywood, C. Johnson, A. Jones, J. Rae, and S. Woodward, 2007: Improved representation of aerosols for HadGEM2. Met Office Hadley Centre, Technical Note 73.

    Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res.-Atm., 111(D12), D12106, doi:1018 10.1029/2005JD006548.

    Article  Google Scholar 

  • Bryan, K. 1969: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 4, 347–376.

    Article  Google Scholar 

  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, J. C. Comiso, and H. J. Zwally, 1999: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., 104, 15,803–15,814.

    Article  Google Scholar 

  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos. Chem. Phys. Discuss., 11, 10875–10933, doi:10.5194/acpd-11-10875-2011.

    Article  Google Scholar 

  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model HadGEM2. Geosci. Model Dev. Discuss., 4, 997–1062, doi:10.5194/gmdd-4-997-2011.

    Article  Google Scholar 

  • Cox, M. D., 1984: A primitive equation, three dimensional model of the ocean. Ocean Group Tech. Rep. GFDL, Princeton, NJ, 143 pp.

    Google Scholar 

  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165, doi:10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Gan, S.-Y., H.-S. Lee, M.-J. Kim, H.-J. Baek, and C. Cho, 2011: Evaluation of the HadGEM2-AO by present climate simulation for IPCC AR5 and CMIP5, Abstract, AOGS 2011 8th Annual Meeting, Taipei, Taiwan, Asia Oceania Geo. Soc..

    Google Scholar 

  • Gregory, J. M., P. A. Stott, D. J. Cresswell, N. A. Rayner, C. Gordon, and D. M. H. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29, 2175, doi:10.1029/2001GL014575.

    Article  Google Scholar 

  • Held, I. M. and B. J. Soden, 2006: Robust response of the hydrological cycle to global warming. J. Climate, 19, 5686–5699.

    Article  Google Scholar 

  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109,117–161, DOI 10.1007/s10584-011-0153-2.

    Article  Google Scholar 

  • International CLIVAR Project office, 2008, Report of the 11th Session of the JSC/CLIVAR Working Group on Coupled Modelling (WGCM). CLIVAR Publication Series No. 132, 54pp.

    Google Scholar 

  • IPCC, 1997: IPCC Special Report on The Regional Impacts of Climate Change: An assessment of vulnerability [Watson, R. T., M. C. Zinyoweara, and R. H. Moss (eds)]. Cambridge Unversity Press, Cambridge, United Kingdom.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, New York.

  • Johns, T. C., and Coauthors, 2006: The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. J. Climate, 19, 1302–1328.

    Article  Google Scholar 

  • Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model dev., 4, 543–570, doi: 10.5.5194/gmd-4-543-2011.

    Article  Google Scholar 

  • Kim, J., and T. Reichler, 2011: Regional Performance Skill of Coupled Models in Simulating Present-day Mean Climate. Proceedings of the international workshop on COREDEX-EAST Asia.

    Google Scholar 

  • Kim, M.-J., S.-Y. Gan, H.-S. Lee, H.-J. Baek, and C. Cho, 2011: Evaluation of the East Asian monsoon simulation in HadGEM2-AO for the IPCC AR5 and the CMIP5, Abstract, AOGS 2011 8th Annual Meeting. Taipei, Taiwan, Asia Oceania Geo. Soc.

    Google Scholar 

  • Klein Goldewijk, K., A. Beusen, G. van Drecht, and M. de Vos, 2011: The HYDE 3.1 spatially explicit database of human induced land use change over the past 12,000 years. Global Ecol. Biogeogr., 20, 73–86.

    Article  Google Scholar 

  • Lean, J. L., 2009: Calculations of Solar Irradiance: monthly means from 1882 to 2008, annual means from 1610 to 2008. http://www.geo.fuberlin.de/en/met/ag/strat/forschung/SOLARIS/Inputdata/.

    Google Scholar 

  • Lee, H.-S., S.-Y. Gan, H.-J. Baek, and C. Cho, 2010: Evaluation of the preindustrial simulation of HadGEM2-AO. Proc., The Autumn Meeting of KMS, 2010. Busan, Korea, Korean Meteor. Soc., 146–147.

    Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res.-ocean, 85 (C10), 5529–5554, doi:10.1029/JC085iC10p05529.

    Article  Google Scholar 

  • Martin, G. M, M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre global environmental model (HADGEM1), Part I: Model description and global climatology. J. Climate, 19, 1274–1301.

    Article  Google Scholar 

  • ____, _____, and R. C. Levine, 2012: The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family. Earth Syst. Dynam., 3, 245–261, doi:10.5194/esd-3-245-2012.

    Article  Google Scholar 

  • The HadGEM2 Development Team: Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model Climate configurations, Geosci. Model Dev. Discuss., 4, 765–841, doi: 10.5194/ gmdd-4-765-2011.

    Article  Google Scholar 

  • McLaren, A. J. and J. K. Ridley, 2005: The Sea Ice Model. Unified Model Doc. Paper 45, 46 pp.

    Google Scholar 

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge Unversity Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • ____, and Coauthors, 2012, Climate system response to external forcings and climate change projections in CCSM4. J. Climate, doi: 10.1175/JCLI-D-11-00240.1.

    Google Scholar 

  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic change (Special issue), doi: 10.1007/s10584-011-0148-z.

    Google Scholar 

  • Met Office, 2010: Advance: Improved science for mitigation policy advice. V. Pope, J. Lowe, Lizzie Kendon, F. Carroll, and S. Tempest, Eds., Met Office, Devon, UK, 16.

  • Mitas, C. M. and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalysis. Geophys. Res. Lett., 33, L01810, doi:10.1029/2005GL024406.

    Article  Google Scholar 

  • Moss, R., and Coauthors, 2008: Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, 132 pp.

    Google Scholar 

  • ___, and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.

    Article  Google Scholar 

  • Nguyen, H., 2011: Observation of the Hadley cells. Presentation, Greenhouse 2011: The science of climate change, Cairns. Australia, http://www.greenhouse2011.com/UserFiles/Presentation/PresentationUrl_35.pdf.

    Google Scholar 

  • Reichler T. and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303–311.

    Article  Google Scholar 

  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219.

    Article  Google Scholar 

  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22987–22994.

    Article  Google Scholar 

  • Stott, P. A., G. S. Jones, J. A. Lowe, P. Thorne, C. Durman, T. C. Johns, and J.-C. Thelen, 2006: Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J. Climate, 19, 2763–2782.

    Article  Google Scholar 

  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier: 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, doi:10.1029/ 2012GL052676.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A Summary of the CMIP5 Experiment Design, http://www-pcmdi.llnl.gov/

    Google Scholar 

  • ____, _____, and _____, 2011: A Overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-11-00094.1

    Google Scholar 

  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006, Going to the Extremes, An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185–211, doi: 10.1007/s10584-006-9051-4.

    Article  Google Scholar 

  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327–339.

    Article  Google Scholar 

  • ____, 2011: Changes in precipitation with climate change. Climate Res., 47, 123–138.

    Article  Google Scholar 

  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5–31, doi;10.1007/s10584-011-0148-z.

    Article  Google Scholar 

  • Wu, P., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, L12705, doi:10.1029/2010GL043730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jeong Baek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, HJ., Lee, J., Lee, HS. et al. Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific J Atmos Sci 49, 603–618 (2013). https://doi.org/10.1007/s13143-013-0053-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0053-7

Key words

Navigation