Skip to main content
Log in

Transgressive segregation for yield traits in Oryza sativa IR58025B X Oryza meridionalis Ng. Bc2F3population under irrigated and aerobic conditions

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Wild species of the genus Oryza are a good source of beneficial alleles for enhancing rice yield under normal and adverse conditions. BC2F3 population was derived from a cross between Oryza sativa IR58025B and Oryza meridionalis Ng. (2n = 24, AA) a heat tolerant wild species to evaluate 12 yield traits under irrigated and aerobic conditions. Analysis of variance and genetic estimates indicated there is substantial genetic variation among progenies under both conditions. Grain yield had high heritability (61.9%) and genetic advance (36.4%) under irrigated conditions but moderate heritability (49.6%) and genetic advance (13.3%) under aerobic conditions indicating that selection for yield will be effective under both conditions. Panicle number, grain number, spikelet fertility, and test weight showed significant positive correlation with grain yield under both conditions. Families out-performing IR58025B for yield under both conditions were obtained providing evidence that phenotypically inferior O. meridionalis contributed to yield increase. This species can be a novel source of natural genetic variation for the improvement of rice under irrigated as well as under aerobic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard J. 2004. QTL mapping of grain quality traits from the interspecific cross Oryza sativa/O. glaberrima. Theor. Appl. Genet. 109: 630–639

    Article  PubMed  CAS  Google Scholar 

  • Andrew PS, Paul AH, Brian J, Atwell. 2009. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J. Exp. Bot. 61: 191–202

    Google Scholar 

  • Brar DS, Khush GS. 1997. Alien introgression in rice. Plant Mol. Biol. 35: 35–47

    Article  PubMed  CAS  Google Scholar 

  • Brondani, Rangel CN, Brondani V, Ferreira E. 2002. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet. 104: 1192–1203

    Article  PubMed  CAS  Google Scholar 

  • Cheema KK, Bains NS, Mangat GS, Aparna D, Vikal Y, Brar DS, Khush GS, Kuldeep S. 2008. Development of high yielding IR64 X Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica. 160: 401–409.

    CAS  Google Scholar 

  • Dalmacio RD, Brar DS, Ishii T, Sitch TA, Virmani SS, Khush GS. 1995. Identification and transfer of a new cytoplasmic male sterility source from Oryza perennis into indica rice (O. sativa). Euphytica 82: 221–225

    Article  Google Scholar 

  • Fu QN, Zhang PJ, Tan LB, Zhu ZF, Ma D, Fu YC, Zhan XC, Cai HW, Sun CQ. 2010. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). J. Genet. Genomics 37: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Hanson CH, Robinson HF, Comstock RE. 1956. Biometrical studies of yield in segregating population of Korean Lespedeza. Agron. J. 48: 267–282

    Google Scholar 

  • He GM, Luo XJ, Tian F, Li KG, Su W et al. 2006. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res. 16: 618–626

    Article  PubMed  CAS  Google Scholar 

  • Juliano B, Naredo MEB, Lu BR, Jackson MT. 2005. Genetic differentiation in Oryza meridionalis Ng. based on molecular and crossability analyses. Genet. Resour. Crop Evol. 52: 435–445

    Article  CAS  Google Scholar 

  • Kaladhar K, Swamy BPM, Babu AP, Reddy CS, Sarla N. 2008. Mapping quantitative trait loci for yield traits in BC2F2 population derived from Swarna x O. nivara cross. Rice Genet. Newsl. 24: 10

    Google Scholar 

  • Kalmeshwer Gouda P, Mohan Kumar Varma C, Saikumar S, Kiran B, Shenoy VV, Shashidhar HE. 2012. Direct selection for grain yield under moisture stress in Oryza sativa cv. IR58025B x Oryza meridionalis population. Crop Sci. 52: 501–510

    Google Scholar 

  • Khush G. 2005. What will it take to feed 5.0 billion rice con sumers in 2030? Plant Mol. Biol. 59: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Lanceras J, Pantuwan G, Jongdee B, Toojinda T. 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol. 135: 384–399

    Article  PubMed  CAS  Google Scholar 

  • Li CB, Zhou AL, Sang T. 2006. Gentetic analysis of rice domestication syndrome with thewild annual species, Oryza nivara. New Phytol. 170: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Lu BR, Naredo MEB, Juliano AB, Jackson MT. 1997. Hybridization of AA genome rice species from Asia and Australia. II. Meiotic analysis of Oryza meridionalis and its hybrids. Genet. Resour. Crop Evol. 44: 25–31

    Article  Google Scholar 

  • Lu BR, Naredo MEB, Juliano AB, Jackson MT. 1998. Taxonomic status of Oryza glumaepatula Steud. III. Assessment of genomic affinity among AA genome species from the New World, Asia, and Australia. Genet. Resour. Crop Evol. 45: 215–223

    Article  Google Scholar 

  • Lu BR, Silitonga TS. 1999. Wild rice Oryza meridionalis was first found in Indonesia (notes from field). Int. Rice Res. Notes 24: 28

    Google Scholar 

  • Marri PR, Sarla N, Reddy VLN, Siddiq EA. 2005. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet. 6: 33

    Article  PubMed  Google Scholar 

  • McCouch SR, Sweeney M, Li J, Jiang H, Thomson M et al. 2007. Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154: 317–339

    Article  CAS  Google Scholar 

  • Moncada M, Martinez C, Tohme J, Guimaraes E, Chatel M, Borrero J, Gauch H, McCouch S. 2001. Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl. Genet. 102: 41–52

    Article  CAS  Google Scholar 

  • Ng NQ, Hawkes JG, Williams JT, Chang TT. 1981. The recognition of a new species of rice (Oryza) from Australia. Bot. J. Linn. Soc. 82: 327–330

    Article  Google Scholar 

  • Nishikawa T, Vaughan DA, Kadowaki K. 2005. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. Theor. Appl. Genet. 110: 696–705

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Grace XZ, Centeno S, Khush GS, Cassman KG. 2004. Rice yields decline with higher night temperature from global warming. PNAS 27: 9971–9975

    Article  Google Scholar 

  • Price AH, Townend J, Jones MP, Audebert A, Courtois B. 2002. Mapping QTL associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol. Biol. 48: 683–695

    Article  PubMed  CAS  Google Scholar 

  • Sangeeta A, Malhotra PK, Bhatia PK, Rajendraprasad. 2008. Statistical Package for Agricultural Research (SPAR 2.0). J. Ind. Soc. Agril. Statist. 62: 65–74

    Google Scholar 

  • SAS. 1999. SAS/Stat User’s Guide, version 8.2. SAS Institute, Inc., Cary, NC

    Google Scholar 

  • Second G. 1988. Field notes and observations on, a collection of wild rice species in Australia, 3–31 May 1987

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR. 2003. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 107: 1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Somanthri IH. 2001. Wild rice (Oryza spp.): their existence and research in Indonesia. Bull. Agro. Bio. 5: 14–20

    Google Scholar 

  • Statistica software: Available at: http://www.statsoft.com/support/free-statistica/

  • Sun CQ, Wang XK, Yoshimura A, Iwata N. 2001. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor. Appl. Genet. 102: 157–162

    Article  CAS  Google Scholar 

  • Swamy BPM, Sarla N. 2008. Yield QTLs from wild species. Biotech. Adv. 26:106–120.

    Article  CAS  Google Scholar 

  • Swamy BPM, Kaladhar K, Ramesha MS, Viraktamath BC, Sarla N. 2011. Molecular mapping of QTLs for yield and related traits in a Oryza sativa cv Swarna x O. nivara (IRGC81848) backcross population. Rice Sci. 18: 178–186

    Article  Google Scholar 

  • Swamy BPM, Sarla N. 2011. Meta-analysis of yield QTLs derived from inter-specific crosses of rice reveals consensus regions and candidate genes. Plant Mol. Biol. Rep. 29: 663–680

    Article  Google Scholar 

  • Tan LB, Zhang PJ, Liu FX, Wang GJ, Ye S, Zhu ZF, Fu YC, Cai HW, Sun CQ. 2008. Quantitative trait loci underlying domestication and yield-related traits in Oryza rufipogon x Oryza sativa advanced backcross population. Genome 51: 692–704

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC. 1996. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 92: 191–203

    Article  Google Scholar 

  • Tanksley SD, McCouch SR. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Hinga ME, Lobos KB, Xu Y, Martinez C, McCouch SR. 2003. Mapping quantitative trait loci for yield, yield components, and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 107: 479–493

    Article  PubMed  CAS  Google Scholar 

  • Vaughan DA, 1994. The Wild Relatives of Rice, IRRI, Manila Venuprasad R, Lafitte HR, Atlin GN. 2007. Response to direct selection in grain yield under drought stress in rice. Crop Sci. 47: 285–293

    Google Scholar 

  • Wang YM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou D, Liu B. 2005. Extensive de novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics 170: 1945–1956

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Wang H, Wang H, Zhang D, Wu Y, Ou X, Liu S, Dong Z and Liu B. 2010. Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC Plant.Biology 10:190

    Article  PubMed  Google Scholar 

  • Wang ZY, Second G, Tanksley SD. 1992. Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor. Appl. Genet. 83: 565–581

    Article  Google Scholar 

  • Waters DLE, Nock CJ, Ishikawa R, Rice N, Henry RJ. 2012. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecol Evol. 2: 211–217.

    Article  PubMed  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR. 1998. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150: 899–909

    PubMed  CAS  Google Scholar 

  • Xu JH, Kurata N, Akimoto M, Ohtsubo H, Ohtsubo E. 2005. Identification and characterization of Australian wild rice strains of Oryza meridionalis and Oryza rufipogon by SINE insertion polymorphism. Genes Genet. Syst. 80: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahn SN. 2006. Mapping quantitative trait loci for yield loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor. Appl. Genet. 112: 1052–1062

    Article  PubMed  CAS  Google Scholar 

  • Yuan W, Peng S, Cougui C, Virk P, Xing D, Zhang Y, Visperas RM, Laza RC. 2011. Agronomic performance of rice breeding lines selected based on plant traits or grain yield. Field Crops Res. 121: 168–174

    Article  Google Scholar 

  • Zhu Q, Ge S. 2005. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol. 167: 249–265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chejerla Mohan Kumar Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, C.M.K., Gouda, P.K., Saikumar, S. et al. Transgressive segregation for yield traits in Oryza sativa IR58025B X Oryza meridionalis Ng. Bc2F3population under irrigated and aerobic conditions. J. Crop Sci. Biotechnol. 15, 231–238 (2012). https://doi.org/10.1007/s12892-012-0006-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-012-0006-1

Key words

Navigation